BAIT

RAD51

MUT5, recombinase RAD51, L000001571, YER095W
Strand exchange protein; forms a helical filament with DNA that searches for homology; involved in the recombinational repair of double-strand breaks in DNA during vegetative growth and meiosis; homolog of Dmc1p and bacterial RecA protein
Saccharomyces cerevisiae (S288c)
PREY

SLX4

YLR135W
Endonuclease involved in processing DNA; acts during recombination and repair; promotes template switching during break-induced replication (BIR), causing non-reciprocal translocations (NRTs); cleaves branched structures in a complex with Slx1p; involved interstrand cross-link repair and in Rad1p/Rad10p-dependent removal of 3'-nonhomologous tails during DSBR via single-strand annealing; relative distribution to nuclear foci increases upon DNA replication stress
Saccharomyces cerevisiae (S288c)

Positive Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a less severe fitness defect than expected under a given condition. This term is reserved for high or low throughput studies with scores.

Publication

Mapping DNA damage-dependent genetic interactions in yeast via party mating and barcode fusion genetics.

Diaz-Mejia JJ, Celaj A, Mellor JC, Cote A, Balint A, Ho B, Bansal P, Shaeri F, Gebbia M, Weile J, Verby M, Karkhanina A, Zhang Y, Wong C, Rich J, Prendergast D, Gupta G, Oeztuerk S, Durocher D, Brown GW, Roth FP

Condition-dependent genetic interactions can reveal functional relationships between genes that are not evident under standard culture conditions. State-of-the-art yeast genetic interaction mapping, which relies on robotic manipulation of arrays of double-mutant strains, does not scale readily to multi-condition studies. Here, we describe barcode fusion genetics to map genetic interactions (BFG-GI), by which double-mutant strains generated via en masse "party" mating ... [more]

Mol. Syst. Biol. Dec. 28, 2017; 14(5);e7985 [Pubmed: 29807908]

Quantitative Score

  • 0.095389972 [Confidence Score]

Throughput

  • High Throughput

Ontology Terms

  • phenotype: vegetative growth (APO:0000106)

Additional Notes

  • Cultures grown in bleomycin (CHEBI:22907)
  • Cultures grown in zeocin (CHEBI:75046)
  • Interactions determined by barcode fusion genetics to map genetic interactions (BFG-GI) using a ZGenetic Interaction Score (GIS)cutoff corresponding to FDR=0.01 and an additional effect?size cutoff (-0.075>GIS>0.075)

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
RAD51 SLX4
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.3505BioGRID
2605019
RAD51 SLX4
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

Low-0.1498BioGRID
560515
SLX4 RAD51
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Low-BioGRID
1254018
SLX4 RAD51
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

High-BioGRID
454621

Curated By

  • BioGRID