BAIT

SEC15

L000001840, YGL233W
Essential 113 kDa subunit of the exocyst complex; the exocyst mediates polarized targeting and tethering of post-Golgi secretory vesicles to active sites of exocytosis prior to SNARE-mediated fusion; interacts with and functions as a downstream effector of active, GTP-bound Sec4p, a Rab family GTPase
GO Process (3)
GO Function (1)
GO Component (6)
Saccharomyces cerevisiae (S288c)
PREY

SRO7

SNI1, SOP1, L000003105, L000004193, YPR032W
Effector of Rab GTPase Sec4p; forms a complex with Sec4p and t-SNARE Sec9p; involved in exocytosis and docking and fusion of post-Golgi vesicles with plasma membrane; regulates cell proliferation and colony development via the Rho1-Tor1 pathway; homolog of Drosophila lgl tumor suppressor; SRO7 has a paralog, SRO77, that arose from the whole genome duplication
GO Process (4)
GO Function (2)
GO Component (3)
Saccharomyces cerevisiae (S288c)

Dosage Rescue

A genetic interaction is inferred when over expression or increased dosage of one gene rescues the lethality or growth defect of a strain that is mutated or deleted for another gene.

Publication

The tomosyn homologue, Sro7, is a direct effector of the Rab GTPase, Sec4, in post-Golgi vesicle tethering.

Rossi G, Watson K, Kennedy W, Brennwald P

The tomosyn/Sro7 family is thought to play an important role in cell surface trafficking both as an effector of Rab family GTPases and as a regulator of plasma-membrane SNARE function. Recent work has determined the binding site of GTP-bound Sec4 on Sro7. Here we examine the effect of mutations in Sro7 that block Sec4 binding in determining the role of ... [more]

Mol. Biol. Cell Dec. 15, 2017; 29(12);1476-1486 [Pubmed: 29668350]

Throughput

  • Low Throughput

Ontology Terms

  • phenotype: vegetative growth (APO:0000106)

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
SEC15 SRO7
Dosage Growth Defect
Dosage Growth Defect

A genetic interaction is inferred when over expression or increased dosage of one gene causes a growth defect in a strain that is mutated or deleted for another gene.

Low-BioGRID
511915
SEC15 SRO7
Dosage Rescue
Dosage Rescue

A genetic interaction is inferred when over expression or increased dosage of one gene rescues the lethality or growth defect of a strain that is mutated or deleted for another gene.

Low-BioGRID
155592
SEC15 SRO7
Dosage Rescue
Dosage Rescue

A genetic interaction is inferred when over expression or increased dosage of one gene rescues the lethality or growth defect of a strain that is mutated or deleted for another gene.

Low-BioGRID
3626027
SEC15 SRO7
Dosage Rescue
Dosage Rescue

A genetic interaction is inferred when over expression or increased dosage of one gene rescues the lethality or growth defect of a strain that is mutated or deleted for another gene.

Low-BioGRID
511919
SEC15 SRO7
Dosage Rescue
Dosage Rescue

A genetic interaction is inferred when over expression or increased dosage of one gene rescues the lethality or growth defect of a strain that is mutated or deleted for another gene.

Low-BioGRID
164443
SEC15 SRO7
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.3537BioGRID
378727
SEC15 SRO7
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.2872BioGRID
1983592
SRO7 SEC15
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Low-BioGRID
195463
SRO7 SEC15
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Low-BioGRID
213342
SEC15 SRO7
Synthetic Rescue
Synthetic Rescue

A genetic interaction is inferred when mutations or deletions of one gene rescues the lethality or growth defect of a strain mutated or deleted for another gene.

Low-BioGRID
511914

Curated By

  • BioGRID