BAIT

SEC15

L000001840, YGL233W
Essential 113 kDa subunit of the exocyst complex; the exocyst mediates polarized targeting and tethering of post-Golgi secretory vesicles to active sites of exocytosis prior to SNARE-mediated fusion; interacts with and functions as a downstream effector of active, GTP-bound Sec4p, a Rab family GTPase
GO Process (3)
GO Function (1)
GO Component (6)
Saccharomyces cerevisiae (S288c)
PREY

SRO7

SNI1, SOP1, L000003105, L000004193, YPR032W
Effector of Rab GTPase Sec4p; forms a complex with Sec4p and t-SNARE Sec9p; involved in exocytosis and docking and fusion of post-Golgi vesicles with plasma membrane; regulates cell proliferation and colony development via the Rho1-Tor1 pathway; homolog of Drosophila lgl tumor suppressor; SRO7 has a paralog, SRO77, that arose from the whole genome duplication
GO Process (4)
GO Function (2)
GO Component (3)
Saccharomyces cerevisiae (S288c)

Dosage Rescue

A genetic interaction is inferred when over expression or increased dosage of one gene rescues the lethality or growth defect of a strain that is mutated or deleted for another gene.

Publication

Yeast Homologs of Lethal Giant Larvae and Type V Myosin Cooperate in the Regulation of Rab-Dependant Vesicle Clustering and Polarized Exocytosis.

Rossi G, Brennwald P

Lgl family members play an important role in the regulation of cell polarity in eukaryotic cells. The yeast homologues, Sro7 and Sro77, are thought to act downstream of the Rab GTPase Sec4, to promote SNARE function in post-Golgi transport. In this paper, we characterize the interaction between Sro7 and the type V myosin, Myo2, and show that this interaction is ... [more]

Unknown Jan. 19, 2011; 0(0); [Pubmed: 21248204]

Throughput

  • Low Throughput

Ontology Terms

  • phenotype: temperature sensitive growth (APO:0000092)
  • phenotype: vegetative growth (APO:0000106)

Additional Notes

  • expression of SRO7, but not overexpression of SRO7, rescues growth defects

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
SEC15 SRO7
Dosage Growth Defect
Dosage Growth Defect

A genetic interaction is inferred when over expression or increased dosage of one gene causes a growth defect in a strain that is mutated or deleted for another gene.

Low-BioGRID
511915
SEC15 SRO7
Dosage Rescue
Dosage Rescue

A genetic interaction is inferred when over expression or increased dosage of one gene rescues the lethality or growth defect of a strain that is mutated or deleted for another gene.

Low-BioGRID
155592
SEC15 SRO7
Dosage Rescue
Dosage Rescue

A genetic interaction is inferred when over expression or increased dosage of one gene rescues the lethality or growth defect of a strain that is mutated or deleted for another gene.

Low-BioGRID
3626027
SEC15 SRO7
Dosage Rescue
Dosage Rescue

A genetic interaction is inferred when over expression or increased dosage of one gene rescues the lethality or growth defect of a strain that is mutated or deleted for another gene.

Low-BioGRID
2605661
SEC15 SRO7
Dosage Rescue
Dosage Rescue

A genetic interaction is inferred when over expression or increased dosage of one gene rescues the lethality or growth defect of a strain that is mutated or deleted for another gene.

Low-BioGRID
164443
SEC15 SRO7
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.3537BioGRID
378727
SEC15 SRO7
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.2872BioGRID
1983592
SRO7 SEC15
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Low-BioGRID
195463
SRO7 SEC15
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Low-BioGRID
213342
SEC15 SRO7
Synthetic Rescue
Synthetic Rescue

A genetic interaction is inferred when mutations or deletions of one gene rescues the lethality or growth defect of a strain mutated or deleted for another gene.

Low-BioGRID
511914

Curated By

  • BioGRID