PRMT1
Gene Ontology Biological Process
- cell surface receptor signaling pathway [TAS]
- histone H4-R3 methylation [IDA]
- histone methylation [IDA]
- negative regulation of megakaryocyte differentiation [IDA]
- neuron projection development [IMP]
- peptidyl-arginine methylation [IDA]
- peptidyl-arginine methylation, to asymmetrical-dimethyl arginine [IBA]
- protein methylation [TAS]
- regulation of transcription, DNA-templated [IBA]
Gene Ontology Molecular Function- N-methyltransferase activity [IDA, IMP]
- histone methyltransferase activity [IDA]
- histone methyltransferase activity (H4-R3 specific) [IDA]
- identical protein binding [IPI]
- methyltransferase activity [TAS]
- poly(A) RNA binding [IDA]
- protein binding [IPI]
- protein-arginine omega-N asymmetric methyltransferase activity [IBA]
- N-methyltransferase activity [IDA, IMP]
- histone methyltransferase activity [IDA]
- histone methyltransferase activity (H4-R3 specific) [IDA]
- identical protein binding [IPI]
- methyltransferase activity [TAS]
- poly(A) RNA binding [IDA]
- protein binding [IPI]
- protein-arginine omega-N asymmetric methyltransferase activity [IBA]
AR
Gene Ontology Biological Process
- androgen receptor signaling pathway [IDA]
- cell growth [NAS]
- cell proliferation [NAS]
- cell-cell signaling [TAS]
- gene expression [TAS]
- intracellular receptor signaling pathway [IDA]
- negative regulation of extrinsic apoptotic signaling pathway [IDA]
- negative regulation of integrin biosynthetic process [IDA]
- positive regulation of NF-kappaB transcription factor activity [IMP]
- positive regulation of cell proliferation [IDA]
- positive regulation of integrin biosynthetic process [IDA]
- positive regulation of phosphorylation [IMP]
- positive regulation of transcription from RNA polymerase II promoter [IDA, IMP]
- positive regulation of transcription from RNA polymerase III promoter [IDA]
- positive regulation of transcription, DNA-templated [IDA]
- prostate gland development [NAS]
- protein oligomerization [IDA]
- regulation of establishment of protein localization to plasma membrane [IDA]
- sex differentiation [NAS]
- signal transduction [TAS]
- transcription initiation from RNA polymerase II promoter [TAS]
- transcription, DNA-templated [IDA]
- transport [TAS]
Gene Ontology Molecular Function- DNA binding [NAS]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding [IDA]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding transcription factor activity involved in positive regulation of transcription [IDA]
- RNA polymerase II transcription factor binding [IPI]
- androgen binding [NAS]
- androgen receptor activity [IDA, IMP, NAS, TAS]
- beta-catenin binding [IDA, IPI, TAS]
- chromatin binding [IDA]
- enzyme binding [IPI]
- ligand-activated sequence-specific DNA binding RNA polymerase II transcription factor activity [IDA]
- protein binding [IPI]
- protein dimerization activity [NAS]
- receptor binding [IPI]
- sequence-specific DNA binding transcription factor activity [IDA]
- transcription factor binding [IPI]
- transcription regulatory region DNA binding [IDA]
- DNA binding [NAS]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding [IDA]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding transcription factor activity involved in positive regulation of transcription [IDA]
- RNA polymerase II transcription factor binding [IPI]
- androgen binding [NAS]
- androgen receptor activity [IDA, IMP, NAS, TAS]
- beta-catenin binding [IDA, IPI, TAS]
- chromatin binding [IDA]
- enzyme binding [IPI]
- ligand-activated sequence-specific DNA binding RNA polymerase II transcription factor activity [IDA]
- protein binding [IPI]
- protein dimerization activity [NAS]
- receptor binding [IPI]
- sequence-specific DNA binding transcription factor activity [IDA]
- transcription factor binding [IPI]
- transcription regulatory region DNA binding [IDA]
Gene Ontology Cellular Component
Reconstituted Complex
An interaction is inferred between proteins in vitro. This can include proteins in recombinant form or proteins isolated directly from cells with recombinant or purified bait. For example, GST pull-down assays where a GST-tagged protein is first isolated and then used to fish interactors from cell lysates are considered reconstituted complexes (e.g. PUBMED: 14657240, Fig. 4A or PUBMED: 14761940, Fig. 5). This can also include gel-shifts, surface plasmon resonance, isothermal titration calorimetry (ITC) and bio-layer interferometry (BLI) experiments. The bait-hit directionality may not be clear for 2 interacting proteins. In these cases the directionality is up to the discretion of the curator.
Publication
Synergistic enhancement of nuclear receptor function by p160 coactivators and two coactivators with protein methyltransferase activities.
Nuclear receptors (NRs) activate gene transcription by binding to specific enhancer elements and recruiting coactivators of the p160 family to promoters of target genes. The p160 coactivators in turn enhance transcription by recruiting secondary coactivators, including histone acetyltransferases such as CREB-binding protein (CBP) and p300/CBP-associated factor (p/CAF), as well as the recently identified protein methyltransferase, coactivator-associated arginine methyltransferase 1 (CARM1). ... [more]
Throughput
- Low Throughput
Related interactions
| Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
|---|---|---|---|---|---|---|
| AR PRMT1 | Affinity Capture-MS Affinity Capture-MS An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods. | High | - | BioGRID | 3471747 |
Curated By
- BioGRID