MDM2
Gene Ontology Biological Process
- DNA damage response, signal transduction by p53 class mediator resulting in cell cycle arrest [IMP, TAS]
- Fc-epsilon receptor signaling pathway [TAS]
- cellular response to hypoxia [IEP]
- epidermal growth factor receptor signaling pathway [TAS]
- establishment of protein localization [IDA]
- fibroblast growth factor receptor signaling pathway [TAS]
- innate immune response [TAS]
- negative regulation of DNA damage response, signal transduction by p53 class mediator [IDA]
- negative regulation of cell cycle arrest [IDA]
- negative regulation of transcription from RNA polymerase II promoter [IDA]
- negative regulation of transcription, DNA-templated [IDA]
- neurotrophin TRK receptor signaling pathway [TAS]
- peptidyl-lysine modification [IMP]
- phosphatidylinositol-mediated signaling [TAS]
- positive regulation of cell proliferation [TAS]
- positive regulation of mitotic cell cycle [IMP]
- positive regulation of proteasomal ubiquitin-dependent protein catabolic process [IDA]
- protein complex assembly [IDA]
- protein destabilization [IDA]
- protein localization to nucleus [IDA]
- protein ubiquitination [IDA]
- protein ubiquitination involved in ubiquitin-dependent protein catabolic process [IDA]
- regulation of protein catabolic process [IDA]
- response to antibiotic [IEP]
- synaptic transmission [TAS]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
STK11
Gene Ontology Biological Process
- activation of protein kinase activity [IDA]
- anoikis [IMP]
- cell cycle arrest [IDA, TAS]
- energy reserve metabolic process [TAS]
- establishment of cell polarity [ISS]
- glucose homeostasis [ISS]
- insulin receptor signaling pathway [TAS]
- intrinsic apoptotic signaling pathway by p53 class mediator [IDA]
- negative regulation of cell growth [ISS]
- negative regulation of cell proliferation [IMP]
- positive regulation of transforming growth factor beta receptor signaling pathway [IMP]
- protein autophosphorylation [IDA]
- protein phosphorylation [IDA]
- regulation of cell growth [ISS]
- regulation of fatty acid biosynthetic process [TAS]
- response to ionizing radiation [ISS]
- small molecule metabolic process [TAS]
- vasculature development [ISS]
Gene Ontology Molecular Function
FRET
An interaction is inferred when close proximity of interaction partners is detected by fluorescence resonance energy transfer between pairs of fluorophore-labeled molecules, such as occurs between CFP (donor) and YFP (acceptor) fusion proteins.
Publication
The OncoPPi network of cancer-focused protein-protein interactions to inform biological insights and therapeutic strategies.
As genomics advances reveal the cancer gene landscape, a daunting task is to understand how these genes contribute to dysregulated oncogenic pathways. Integration of cancer genes into networks offers opportunities to reveal protein-protein interactions (PPIs) with functional and therapeutic significance. Here, we report the generation of a cancer-focused PPI network, termed OncoPPi, and identification of >260 cancer-associated PPIs not in ... [more]
Throughput
- High Throughput
Additional Notes
- Time-resolved fluorescence energy transfer (TR-FRET)
Related interactions
| Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
|---|---|---|---|---|---|---|
| STK11 MDM2 | Affinity Capture-Western Affinity Capture-Western An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins. | Low | - | BioGRID | - | |
| MDM2 STK11 | Affinity Capture-Western Affinity Capture-Western An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins. | Low | - | BioGRID | - |
Curated By
- BioGRID