BAIT
PINK1
BRPK, PARK6
PTEN induced putative kinase 1
GO Process (37)
GO Function (11)
GO Component (17)
Gene Ontology Biological Process
- TORC2 signaling [IC]
- activation of protein kinase B activity [IC]
- cellular response to hypoxia [IMP]
- cellular response to toxic substance [TAS]
- intracellular signal transduction [IDA]
- mitochondrion degradation [IMP]
- mitochondrion organization [IMP]
- negative regulation of JNK cascade [TAS]
- negative regulation of gene expression [ISS]
- negative regulation of hydrogen peroxide-induced neuron intrinsic apoptotic signaling pathway [IDA, IMP]
- negative regulation of neuron apoptotic process [IMP]
- negative regulation of oxidative stress-induced cell death [IDA]
- negative regulation of oxidative stress-induced intrinsic apoptotic signaling pathway [IDA]
- negative regulation of oxidative stress-induced neuron death [TAS]
- negative regulation of reactive oxygen species metabolic process [IMP]
- peptidyl-serine autophosphorylation [TAS]
- peptidyl-serine phosphorylation [IDA, TAS]
- phosphorylation [NAS]
- positive regulation of I-kappaB kinase/NF-kappaB signaling [IDA]
- positive regulation of mitochondrial electron transport, NADH to ubiquinone [TAS]
- positive regulation of mitochondrial fission [IBA]
- positive regulation of peptidase activity [TAS]
- positive regulation of peptidyl-serine phosphorylation [IDA, TAS]
- positive regulation of protein kinase B signaling [IC]
- positive regulation of release of cytochrome c from mitochondria [IMP]
- positive regulation of ubiquitin-protein transferase activity [TAS]
- protein phosphorylation [IDA, TAS]
- protein ubiquitination [IMP]
- regulation of mitochondrial membrane potential [IGI, IMP]
- regulation of mitochondrion degradation [TAS]
- regulation of protein complex assembly [IDA]
- regulation of protein ubiquitination [IDA]
- regulation of reactive oxygen species metabolic process [IGI, IMP]
- regulation of synaptic vesicle transport [TAS]
- response to oxidative stress [IGI]
- response to stress [IDA]
- ubiquitin-dependent protein catabolic process [TAS]
Gene Ontology Molecular Function- ATP binding [IDA]
- C3HC4-type RING finger domain binding [IPI]
- calcium-dependent protein kinase activity [IDA]
- kinase activity [IDA, NAS]
- magnesium ion binding [IDA]
- peptidase activator activity [TAS]
- protease binding [IPI, TAS]
- protein binding [IPI]
- protein kinase B binding [IDA]
- protein serine/threonine kinase activity [IDA, TAS]
- ubiquitin protein ligase binding [IPI]
- ATP binding [IDA]
- C3HC4-type RING finger domain binding [IPI]
- calcium-dependent protein kinase activity [IDA]
- kinase activity [IDA, NAS]
- magnesium ion binding [IDA]
- peptidase activator activity [TAS]
- protease binding [IPI, TAS]
- protein binding [IPI]
- protein kinase B binding [IDA]
- protein serine/threonine kinase activity [IDA, TAS]
- ubiquitin protein ligase binding [IPI]
Gene Ontology Cellular Component
- Lewy body [TAS]
- TORC2 complex [IPI]
- astrocyte projection [IDA]
- axon [IDA]
- cell body [IDA]
- chromatin [IDA]
- cytoplasm [IDA]
- cytoskeleton [IDA]
- cytosol [IDA]
- integral component of mitochondrial outer membrane [IDA]
- membrane [IDA]
- mitochondrial inner membrane [IDA]
- mitochondrial intermembrane space [IDA]
- mitochondrial outer membrane [IDA]
- mitochondrion [IDA]
- nucleus [IDA]
- perinuclear region of cytoplasm [IDA]
Homo sapiens
PREY
TIMM50
TIM50, TIM50L, PRO1512
translocase of inner mitochondrial membrane 50 homolog (S. cerevisiae)
GO Process (6)
GO Function (6)
GO Component (5)
Gene Ontology Biological Process
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Homo sapiens
Affinity Capture-MS
An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods.
Publication
PINK1 Interacts with VCP/p97 and Activates PKA to Promote NSFL1C/p47 Phosphorylation and Dendritic Arborization in Neurons.
While PTEN-induced kinase 1 (PINK1) is well characterized for its role in mitochondrial homeostasis, much less is known concerning its ability to prevent synaptodendritic degeneration. Using unbiased proteomic methods, we identified valosin-containing protein (VCP) as a major PINK1-interacting protein. RNAi studies demonstrate that both VCP and its cofactor NSFL1C/p47 are necessary for the ability of PINK1 to increase dendritic complexity. ... [more]
eNeuro Feb. 21, 2019; 5(6); [Pubmed: 30783609]
Throughput
- High Throughput
Curated By
- BioGRID