BAIT

RPB7

DNA-directed RNA polymerase II subunit RPB7, B16, L000001681, YDR404C
RNA polymerase II subunit B16; forms dissociable heterodimer with Rpb4p; Rpb4/7 dissociates from RNAPII as Ser2 CTD phosphorylation increases; Rpb4/7 regulates cellular lifespan via mRNA decay process; involved in recruitment of 3'-end processing factors to transcribing RNA polymerase II complex, export of mRNA to cytoplasm under stress conditions; also involved in translation initiation
Saccharomyces cerevisiae (S288c)
PREY

XRN1

DST2, KEM1, RAR5, SEP1, SKI1, chromatin-binding exonuclease XRN1, L000000891, L000001902, YGL173C
Evolutionarily-conserved 5'-3' exonuclease; component of cytoplasmic processing (P) bodies involved in mRNA decay; also enters the nucleus and positively regulates transcription initiation and elongation; plays a role in microtubule-mediated processes, filamentous growth, ribosomal RNA maturation, and telomere maintenance; activated by the scavenger decapping enzyme Dcs1p
Saccharomyces cerevisiae (S288c)

Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Publication

The Rpb7p subunit of yeast RNA polymerase II plays roles in the two major cytoplasmic mRNA decay mechanisms.

Lotan R, Goler-Baron V, Duek L, Haimovich G, Choder M

The steady-state level of mRNAs is determined by the balance between their synthesis by RNA polymerase II (Pol II) and their decay. In the cytoplasm, mRNAs are degraded by two major pathways; one requires decapping and 5' to 3' exonuclease activity and the other involves 3' to 5' degradation. Rpb7p is a Pol II subunit that shuttles between the nucleus ... [more]

J. Cell Biol. Sep. 24, 2007; 178(7);1133-43 [Pubmed: 17875743]

Throughput

  • Low Throughput

Ontology Terms

  • phenotype: inviable (APO:0000112)

Curated By

  • BioGRID