BAIT
CASQ2
PDIB2
calsequestrin 2 (cardiac muscle)
GO Process (17)
GO Function (4)
GO Component (9)
Gene Ontology Biological Process
- Purkinje myocyte to ventricular cardiac muscle cell signaling [NAS]
- cardiac muscle contraction [IMP]
- cellular response to caffeine [IMP]
- detection of calcium ion [TAS]
- ion transmembrane transport [TAS]
- negative regulation of potassium ion transmembrane transporter activity [ISS]
- negative regulation of potassium ion transport [ISS]
- negative regulation of ryanodine-sensitive calcium-release channel activity [IDA, ISS]
- protein polymerization [IDA]
- regulation of cardiac muscle contraction by regulation of the release of sequestered calcium ion [IMP]
- regulation of cell communication by electrical coupling [IMP]
- regulation of heart rate [IMP]
- regulation of membrane repolarization [ISS]
- regulation of release of sequestered calcium ion into cytosol by sarcoplasmic reticulum [ISS]
- sequestering of calcium ion [IDA, IMP]
- striated muscle contraction [TAS]
- transmembrane transport [TAS]
Gene Ontology Molecular Function
Homo sapiens
PREY
MYH9
BDPLT6, DFNA17, EPSTS, FTNS, MHA, NMHC-II-A, NMMHC-IIA, NMMHCA, RP1-68O2.1
myosin, heavy chain 9, non-muscle
GO Process (16)
GO Function (12)
GO Component (20)
Gene Ontology Biological Process
- ATP catabolic process [IDA]
- actin cytoskeleton reorganization [IMP]
- actin filament-based movement [IDA]
- actomyosin structure organization [IDA]
- angiogenesis [IDA]
- axon guidance [TAS]
- blood vessel endothelial cell migration [IMP]
- cytokinesis [IMP]
- integrin-mediated signaling pathway [NAS]
- leukocyte migration [NAS]
- membrane protein ectodomain proteolysis [IDA]
- monocyte differentiation [IEP]
- platelet aggregation [IMP]
- platelet formation [IMP]
- protein transport [IMP]
- regulation of cell shape [IMP]
Gene Ontology Molecular Function- ADP binding [IDA]
- ATP binding [IDA]
- ATPase activity [IDA]
- actin binding [IDA]
- actin filament binding [IDA, NAS]
- actin-dependent ATPase activity [IDA]
- microfilament motor activity [IDA]
- motor activity [NAS]
- poly(A) RNA binding [IDA]
- protein anchor [IMP]
- protein binding [IPI]
- protein homodimerization activity [IDA]
- ADP binding [IDA]
- ATP binding [IDA]
- ATPase activity [IDA]
- actin binding [IDA]
- actin filament binding [IDA, NAS]
- actin-dependent ATPase activity [IDA]
- microfilament motor activity [IDA]
- motor activity [NAS]
- poly(A) RNA binding [IDA]
- protein anchor [IMP]
- protein binding [IPI]
- protein homodimerization activity [IDA]
Gene Ontology Cellular Component
- COP9 signalosome [IDA]
- actin cytoskeleton [IDA]
- actomyosin [IDA]
- actomyosin contractile ring [IDA]
- cell leading edge [IDA]
- cleavage furrow [IDA]
- cytoplasm [IDA]
- cytosol [IDA]
- extracellular vesicular exosome [IDA]
- immunological synapse [IDA]
- integrin complex [IDA]
- membrane [IDA]
- myosin II complex [IDA]
- myosin II filament [IDA]
- nucleus [IDA]
- plasma membrane [IDA]
- protein complex [IDA]
- ruffle [IDA]
- stress fiber [IDA]
- uropod [IDA]
Homo sapiens
Proximity Label-MS
An interaction is inferred when a bait-enzyme fusion protein selectively modifies a vicinal protein with a diffusible reactive product, followed by affinity capture of the modified protein and identification by mass spectrometric methods.
Publication
Histone Interaction Landscapes Visualized by Crosslinking Mass Spectrometry in Intact Cell Nuclei.
Cells organize their actions partly through tightly controlled protein-protein interactions-collectively termed the interactome. Here we use crosslinking mass spectrometry (XL-MS) to chart the protein-protein interactions in intact human nuclei. Overall, we identified ∼8,700 crosslinks, of which 2/3 represent links connecting distinct proteins. From these data, we gain insights on interactions involving histone proteins. We observed that core histones on the ... [more]
Mol. Cell Proteomics Dec. 01, 2017; 17(10);2018-2033 [Pubmed: 30021884]
Throughput
- High Throughput
Additional Notes
- interaction identified using XL-MS (cross-linking mass spectrometry): TX100-insoluble fractions from cells were treated with cross-linker and cross-linked proteins were identified by mass-spectrometry; interaction is undirectional; therefore bait and prey/hit have been assigned arbitrarily; interactions with FDRs (false discovery rates) of 1% or less were reported; this interaction was not detected in parallel experiments using unfractionated cells or TX100-soluble fractions
Curated By
- BioGRID