PRKACA
Gene Ontology Biological Process
- G2/M transition of mitotic cell cycle [TAS]
- activation of phospholipase C activity [TAS]
- activation of protein kinase A activity [TAS]
- blood coagulation [TAS]
- calcium-mediated signaling using intracellular calcium source [TAS]
- carbohydrate metabolic process [TAS]
- cell communication by electrical coupling involved in cardiac conduction [TAS]
- cellular response to epinephrine stimulus [TAS]
- cellular response to glucagon stimulus [TAS]
- cellular response to glucose stimulus [IDA]
- cytosolic calcium ion homeostasis [TAS]
- energy reserve metabolic process [TAS]
- epidermal growth factor receptor signaling pathway [TAS]
- fibroblast growth factor receptor signaling pathway [TAS]
- gluconeogenesis [TAS]
- glucose metabolic process [TAS]
- innate immune response [TAS]
- intracellular signal transduction [TAS]
- mitotic cell cycle [TAS]
- neurotrophin TRK receptor signaling pathway [TAS]
- peptidyl-serine phosphorylation [IDA]
- positive regulation of cell cycle arrest [ISS]
- protein phosphorylation [NAS]
- regulation of cardiac muscle contraction [TAS]
- regulation of cardiac muscle contraction by regulation of the release of sequestered calcium ion [TAS]
- regulation of heart rate [TAS]
- regulation of insulin secretion [TAS]
- regulation of osteoblast differentiation [IDA]
- regulation of proteasomal protein catabolic process [IDA]
- regulation of protein binding [TAS]
- regulation of ryanodine-sensitive calcium-release channel activity [TAS]
- regulation of tight junction assembly [IDA]
- signal transduction [TAS]
- small molecule metabolic process [TAS]
- sperm capacitation [ISS]
- transmembrane transport [TAS]
- triglyceride catabolic process [TAS]
- water transport [TAS]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
PKIA
Gene Ontology Biological Process
Gene Ontology Molecular Function
Reconstituted Complex
An interaction is detected between purified proteins in vitro.
Publication
Evidence for the importance of hydrophobic residues in the interactions between the cAMP-dependent protein kinase catalytic subunit and the protein kinase inhibitors.
The protein kinase inhibitors (PKIs) are potent inhibitors of the catalytic (C) subunit of cAMP-dependent protein kinase. In this study, the interaction between Phe10 of PKI and the C subunit residues Tyr235 and Phe239 was investigated using site-directed mutagenesis. Previous peptide studies as well as the crystal structure suggested that these residues may play a key role in C-PKI binding. ... [more]
Throughput
- Low Throughput
Related interactions
Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
---|---|---|---|---|---|---|
PRKACA PKIA | Affinity Capture-MS Affinity Capture-MS An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods. | High | 510 | BioGRID | 3481444 | |
PRKACA PKIA | Affinity Capture-MS Affinity Capture-MS An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods. | High | - | BioGRID | 3363976 |
Curated By
- BioGRID