CAV1
Gene Ontology Biological Process
- T cell costimulation [IDA]
- apoptotic signaling pathway [IMP]
- blood coagulation [TAS]
- calcium ion homeostasis [ISS]
- calcium ion transport [ISS]
- caveola assembly [IGI, IMP]
- caveolin-mediated endocytosis [IDA]
- cellular calcium ion homeostasis [ISS]
- cellular response to hyperoxia [IMP]
- cellular response to starvation [IEP]
- cholesterol homeostasis [ISS, TAS]
- cholesterol transport [TAS]
- cytosolic calcium ion homeostasis [IDA]
- inactivation of MAPK activity [ISS]
- leukocyte migration [TAS]
- lipid storage [ISS]
- maintenance of protein location in cell [ISS]
- mammary gland development [ISS]
- mammary gland involution [ISS]
- membrane depolarization [ISS]
- negative regulation of BMP signaling pathway [IDA]
- negative regulation of JAK-STAT cascade [ISS]
- negative regulation of MAPK cascade [ISS]
- negative regulation of anoikis [IMP]
- negative regulation of canonical Wnt signaling pathway [ISS]
- negative regulation of endothelial cell proliferation [ISS]
- negative regulation of epithelial cell differentiation [ISS]
- negative regulation of nitric oxide biosynthetic process [ISS]
- negative regulation of peptidyl-serine phosphorylation [IDA]
- negative regulation of peptidyl-tyrosine autophosphorylation [IMP]
- negative regulation of pinocytosis [IMP]
- negative regulation of potassium ion transmembrane transport [IMP]
- negative regulation of protein binding [IDA]
- negative regulation of protein tyrosine kinase activity [IMP]
- negative regulation of protein ubiquitination [IMP]
- negative regulation of transcription from RNA polymerase II promoter [ISS]
- nitric oxide homeostasis [ISS]
- nitric oxide metabolic process [TAS]
- positive regulation of calcium ion transport into cytosol [ISS]
- positive regulation of canonical Wnt signaling pathway [IMP]
- positive regulation of extrinsic apoptotic signaling pathway [IMP]
- positive regulation of intrinsic apoptotic signaling pathway [IMP]
- positive regulation of metalloenzyme activity [ISS]
- positive regulation of peptidyl-serine phosphorylation [IDA]
- positive regulation of vasoconstriction [ISS]
- protein homooligomerization [ISS]
- protein localization [ISS]
- receptor internalization involved in canonical Wnt signaling pathway [IMP]
- regulation of blood coagulation [IMP]
- regulation of cardiac muscle cell action potential involved in regulation of contraction [IC]
- regulation of fatty acid metabolic process [ISS]
- regulation of inward rectifier potassium channel activity [IMP]
- regulation of membrane repolarization during action potential [IMP]
- regulation of nitric-oxide synthase activity [TAS]
- regulation of peptidase activity [ISS]
- regulation of smooth muscle contraction [ISS]
- response to calcium ion [ISS]
- response to estrogen [IDA]
- response to hypoxia [ISS]
- response to progesterone [IDA]
- skeletal muscle tissue development [ISS]
- small molecule metabolic process [TAS]
- triglyceride metabolic process [ISS]
- vasculogenesis [ISS]
- vesicle organization [IDA]
Gene Ontology Molecular Function- cholesterol binding [TAS]
- enzyme binding [IPI]
- identical protein binding [IPI]
- inward rectifier potassium channel inhibitor activity [IDA]
- ion channel binding [IPI]
- nitric-oxide synthase binding [IPI]
- patched binding [NAS]
- peptidase activator activity [ISS]
- protein binding [IPI]
- protein complex scaffold [TAS]
- protein kinase binding [IPI]
- receptor binding [IPI]
- structural molecule activity [IDA]
- cholesterol binding [TAS]
- enzyme binding [IPI]
- identical protein binding [IPI]
- inward rectifier potassium channel inhibitor activity [IDA]
- ion channel binding [IPI]
- nitric-oxide synthase binding [IPI]
- patched binding [NAS]
- peptidase activator activity [ISS]
- protein binding [IPI]
- protein complex scaffold [TAS]
- protein kinase binding [IPI]
- receptor binding [IPI]
- structural molecule activity [IDA]
Gene Ontology Cellular Component
- Golgi membrane [IDA, TAS]
- apical plasma membrane [IDA]
- basolateral plasma membrane [IDA]
- caveola [IDA, NAS]
- cytoplasmic vesicle [IDA]
- endocytic vesicle membrane [TAS]
- endoplasmic reticulum [IDA]
- endosome [IDA]
- focal adhesion [IDA]
- intracellular [IDA]
- lipid particle [TAS]
- membrane raft [IDA]
- perinuclear region of cytoplasm [IDA, ISS]
- plasma membrane [IDA, TAS]
- protein complex [IDA]
FLOT2
Gene Ontology Biological Process
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Affinity Capture-Western
An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins.
Publication
Flotillins/cavatellins are differentially expressed in cells and tissues and form a hetero-oligomeric complex with caveolins in vivo. Characterization and epitope-mapping of a novel flotillin-1 monoclonal antibody probe.
Caveolae are vesicular organelles that represent a subcompartment of the plasma membrane. Caveolins and flotillins are two families of mammalian caveolae-associated integral membrane proteins. However, it remains unknown whether flotillins interact with caveolin proteins to form a stable caveolar complex or if expression of flotillins can drive vesicle formation. Here, we examine the cell type and tissue-specific expression of the ... [more]
Throughput
- Low Throughput
Related interactions
Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
---|---|---|---|---|---|---|
CAV1 FLOT2 | Proximity Label-MS Proximity Label-MS An interaction is inferred when a bait-enzyme fusion protein selectively modifies a vicinal protein with a diffusible reactive product, followed by affinity capture of the modified protein and identification by mass spectrometric methods. | High | 135 | BioGRID | 2981757 |
Curated By
- BioGRID