BAIT

SGS1

ATP-dependent DNA helicase SGS1, L000001877, YMR190C
RecQ family nucleolar DNA helicase; role in genome integrity maintenance; regulates chromosome synapsis and meiotic joint molecule/crossover formation; stimulates DNA catenation/decatenation activity of Top3p; potential repressor of a subset of rapamycin responsive genes; rapidly lost in response to rapamycin in Rrd1p-dependent manner; similar to human BLM and WRN proteins implicated in Bloom and Werner syndromes; forms nuclear foci upon DNA replication stress
Saccharomyces cerevisiae (S288c)
PREY

MMS22

SLM2, YLR320W
Subunit of E3 ubiquitin ligase complex involved in replication repair; stabilizes protein components of the replication fork, such as the fork-pausing complex and leading strand polymerase, preventing fork collapse and promoting efficient recovery during replication stress; required for accurate meiotic chromosome segregation
Saccharomyces cerevisiae (S288c)

Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

Publication

Comprehensive Synthetic Genetic Array Analysis of Alleles That Interact with Mutation of the Saccharomyces cerevisiae RecQ Helicases Hrq1 and Sgs1.

Sanders E, Nguyen PA, Rogers CM, Bochman ML

Most eukaryotic genomes encode multiple RecQ family helicases, including five such enzymes in humans. For many years, the yeast Saccharomyces cerevisiae was considered unusual in that it only contained a single RecQ helicase, named Sgs1 However, it has recently been discovered that a second RecQ helicase, called Hrq1, resides in yeast. Both Hrq1 and Sgs1 are involved in genome integrity, ... [more]

G3 (Bethesda) Dec. 03, 2020; 10(12);4359-4368 [Pubmed: 33115720]

Throughput

  • High Throughput

Ontology Terms

  • phenotype: colony size (APO:0000063)

Additional Notes

  • SGA with hrq1-K318A sgs1-deletion double mutant as query; genetic complex
  • SGA with hrq1-deletion sgs1-deletion double mutant as query; genetic complex
  • SGA with sgs1-deletion as query

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
SGS1 MMS22
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

High-BioGRID
453185
MMS22 SGS1
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

High-BioGRID
457656

Curated By

  • BioGRID