BAIT

SGS1

ATP-dependent DNA helicase SGS1, L000001877, YMR190C
RecQ family nucleolar DNA helicase; role in genome integrity maintenance; regulates chromosome synapsis and meiotic joint molecule/crossover formation; stimulates DNA catenation/decatenation activity of Top3p; potential repressor of a subset of rapamycin responsive genes; rapidly lost in response to rapamycin in Rrd1p-dependent manner; similar to human BLM and WRN proteins implicated in Bloom and Werner syndromes; forms nuclear foci upon DNA replication stress
Saccharomyces cerevisiae (S288c)
PREY

CDC13

EST4, telomere-binding protein CDC13, L000000253, YDL220C
Single stranded DNA-binding protein found at TG1-3 telomere G-tails; key roles in regulation of telomerase, telomere end protection, conventional telomere replication; regulates telomere replication through recruitment of specific sub-complexes, essential function is telomere capping; forms homodimer via N-terminus; disruption of dimerization leads to short telomeres; autophagy and proteasome are involved in Cdc13p degradation; differentially phosphorylated through cell cycle
Saccharomyces cerevisiae (S288c)

Positive Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a less severe fitness defect than expected under a given condition. This term is reserved for high or low throughput studies with scores.

Publication

Comprehensive Synthetic Genetic Array Analysis of Alleles That Interact with Mutation of the Saccharomyces cerevisiae RecQ Helicases Hrq1 and Sgs1.

Sanders E, Nguyen PA, Rogers CM, Bochman ML

Most eukaryotic genomes encode multiple RecQ family helicases, including five such enzymes in humans. For many years, the yeast Saccharomyces cerevisiae was considered unusual in that it only contained a single RecQ helicase, named Sgs1 However, it has recently been discovered that a second RecQ helicase, called Hrq1, resides in yeast. Both Hrq1 and Sgs1 are involved in genome integrity, ... [more]

G3 (Bethesda) Dec. 03, 2020; 10(12);4359-4368 [Pubmed: 33115720]

Throughput

  • High Throughput

Ontology Terms

  • phenotype: colony size (APO:0000063)

Additional Notes

  • SGA with hrq1-K318A sgs1-K706A double mutant as query against temperature-sensitive collection, see Table S17 for ts allele (hit); genetic complex
  • SGA with hrq1-K318A sgs1-deletion double mutant as query against temperature-sensitive collection, see Table S16 for ts allele (hit); genetic complex
  • SGA with hrq1-deletion sgs1-K706A double mutant as query against temperature-sensitive collection, see Table S15 for ts allele (hit); genetic complex
  • SGA with sgs1-K706A as query against temperature-sensitive collection, see Table S13 for ts allele (hit)
  • SGA with sgs1-deletion as query against temperature-sensitive collection, see Table S12 for ts allele (hit)

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
CDC13 SGS1
Dosage Growth Defect
Dosage Growth Defect

A genetic interaction is inferred when over expression or increased dosage of one gene causes a growth defect in a strain that is mutated or deleted for another gene.

Low-BioGRID
448915
SGS1 CDC13
Phenotypic Enhancement
Phenotypic Enhancement

A genetic interaction is inferred when mutation or overexpression of one gene results in enhancement of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene.

High-BioGRID
2340589
SGS1 CDC13
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Low-BioGRID
519398
CDC13 SGS1
Synthetic Rescue
Synthetic Rescue

A genetic interaction is inferred when mutations or deletions of one gene rescues the lethality or growth defect of a strain mutated or deleted for another gene.

Low-BioGRID
513125
CDC13 SGS1
Synthetic Rescue
Synthetic Rescue

A genetic interaction is inferred when mutations or deletions of one gene rescues the lethality or growth defect of a strain mutated or deleted for another gene.

Low-BioGRID
519399

Curated By

  • BioGRID