BAIT

GLC7

CID1, DIS2, type 1 serine/threonine-protein phosphatase catalytic subunit GLC7, DIS2S1, PP1, L000000706, YER133W
Type 1 serine/threonine protein phosphatase catalytic subunit; cleavage and polyadenylation factor (CPF) component; involved in various processes including glycogen metabolism, sporulation, mitosis; accumulates at mating projections by interaction with Afr1p; interacts with many regulatory subunits; involved in regulation of the nucleocytoplasmic shuttling of Hxk2p; import into nucleus is inhibited during spindle assembly checkpoint arrest
Saccharomyces cerevisiae (S288c)
PREY

MAD2

spindle checkpoint protein MAD2, L000000975, YJL030W
Component of the spindle-assembly checkpoint complex; delays onset of anaphase in cells with defects in mitotic spindle assembly; forms a complex with Mad1p; regulates APC/C activity during prometaphase and metaphase of meiosis I; gene dosage imbalance between MAD1 and MAD2 leads to chromosome instability
GO Process (3)
GO Function (0)
GO Component (3)
Saccharomyces cerevisiae (S288c)

Dosage Lethality

A genetic interaction is inferred when over expression or increased dosage of one gene causes lethality in a strain that is mutated or deleted for another gene.

Publication

The Phosphatase PP1 Promotes Mitotic Slippage through Mad3 Dephosphorylation.

Ruggiero A, Katou Y, Shirahige K, Seveno M, Piatti S

Accurate chromosome segregation requires bipolar attachment of kinetochores to spindle microtubules. A conserved surveillance mechanism, the spindle assembly checkpoint (SAC), responds to lack of kinetochore-microtubule connections and delays anaphase onset until all chromosomes are bipolarly attached [1]. SAC signaling fires at kinetochores and involves a soluble mitotic checkpoint complex (MCC) that inhibits the anaphase-promoting complex (APC) [2, 3]. The mitotic ... [more]

Curr Biol Dec. 20, 2019; 30(2);335-343.e5 [Pubmed: 31928870]

Throughput

  • Low Throughput

Ontology Terms

  • phenotype: inviable (APO:0000112)

Additional Notes

  • synthetic lethality of GAL1-MAD2 glc7-10 cells on galactose-containing plates

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
GLC7 MAD2
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Low/High-BioGRID
332107
GLC7 MAD2
Synthetic Rescue
Synthetic Rescue

A genetic interaction is inferred when mutations or deletions of one gene rescues the lethality or growth defect of a strain mutated or deleted for another gene.

Low-BioGRID
343433

Curated By

  • BioGRID