DDRGK1
Gene Ontology Biological Process
Gene Ontology Molecular Function
Gene Ontology Cellular Component
MYH9
Gene Ontology Biological Process
- ATP catabolic process [IDA]
- actin cytoskeleton reorganization [IMP]
- actin filament-based movement [IDA]
- actomyosin structure organization [IDA]
- angiogenesis [IDA]
- axon guidance [TAS]
- blood vessel endothelial cell migration [IMP]
- cytokinesis [IMP]
- integrin-mediated signaling pathway [NAS]
- leukocyte migration [NAS]
- membrane protein ectodomain proteolysis [IDA]
- monocyte differentiation [IEP]
- platelet aggregation [IMP]
- platelet formation [IMP]
- protein transport [IMP]
- regulation of cell shape [IMP]
Gene Ontology Molecular Function- ADP binding [IDA]
- ATP binding [IDA]
- ATPase activity [IDA]
- actin binding [IDA]
- actin filament binding [IDA, NAS]
- actin-dependent ATPase activity [IDA]
- microfilament motor activity [IDA]
- motor activity [NAS]
- poly(A) RNA binding [IDA]
- protein anchor [IMP]
- protein binding [IPI]
- protein homodimerization activity [IDA]
- ADP binding [IDA]
- ATP binding [IDA]
- ATPase activity [IDA]
- actin binding [IDA]
- actin filament binding [IDA, NAS]
- actin-dependent ATPase activity [IDA]
- microfilament motor activity [IDA]
- motor activity [NAS]
- poly(A) RNA binding [IDA]
- protein anchor [IMP]
- protein binding [IPI]
- protein homodimerization activity [IDA]
Gene Ontology Cellular Component
- COP9 signalosome [IDA]
- actin cytoskeleton [IDA]
- actomyosin [IDA]
- actomyosin contractile ring [IDA]
- cell leading edge [IDA]
- cleavage furrow [IDA]
- cytoplasm [IDA]
- cytosol [IDA]
- extracellular vesicular exosome [IDA]
- immunological synapse [IDA]
- integrin complex [IDA]
- membrane [IDA]
- myosin II complex [IDA]
- myosin II filament [IDA]
- nucleus [IDA]
- plasma membrane [IDA]
- protein complex [IDA]
- ruffle [IDA]
- stress fiber [IDA]
- uropod [IDA]
Affinity Capture-MS
An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods.
Publication
UFMylation maintains tumour suppressor p53 stability by antagonizing its ubiquitination.
p53 is the most intensively studied tumour suppressor1. The regulation of p53 homeostasis is essential for its tumour-suppressive function2,3. Although p53 is regulated by an array of post-translational modifications, both during normal homeostasis and in stress-induced responses2-4, how p53 maintains its homeostasis remains unclear. UFMylation is a recently identified ubiquitin-like modification with essential biological functions5-7. Deficiency in this modification leads ... [more]
Throughput
- High Throughput
Related interactions
| Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
|---|---|---|---|---|---|---|
| DDRGK1 MYH9 | Affinity Capture-MS Affinity Capture-MS An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods. | High | - | BioGRID | - |
Curated By
- BioGRID