BAIT

PPH21

phosphoprotein phosphatase 2A catalytic subunit PPH21, L000001472, YDL134C
Catalytic subunit of protein phosphatase 2A (PP2A); functionally redundant with Pph22p; methylated at C terminus; forms alternate complexes with several regulatory subunits; involved in signal transduction and regulation of mitosis; forms nuclear foci upon DNA replication stress; PPH21 has a paralog, PPH22, that arose from the whole genome duplication
Saccharomyces cerevisiae (S288c)
PREY

CDC5

MSD2, PKX2, polo kinase CDC5, L000000245, YMR001C
Polo-like kinase; controls targeting and activation of Rho1p at cell division site via Rholp guanine nucleotide exchange factors; regulates Spc72p; also functions in adaptation to DNA damage during meiosis; has similarity to Xenopus Plx1 and S. pombe Plo1p; possible Cdc28p substrate
Saccharomyces cerevisiae (S288c)

Dosage Rescue

A genetic interaction is inferred when over expression or increased dosage of one gene rescues the lethality or growth defect of a strain that is mutated or deleted for another gene.

Publication

The yeast Tor signaling pathway is involved in G2/M transition via polo-kinase.

Nakashima A, Maruki Y, Imamura Y, Kondo C, Kawamata T, Kawanishi I, Takata H, Matsuura A, Lee KS, Kikkawa U, Ohsumi Y, Yonezawa K, Kamada Y

The target of rapamycin (Tor) protein plays central roles in cell growth. Rapamycin inhibits cell growth and promotes cell cycle arrest at G1 (G0). However, little is known about whether Tor is involved in other stages of the cell division cycle. Here we report that the rapamycin-sensitive Tor complex 1 (TORC1) is involved in G2/M transition in S. cerevisiae. Strains ... [more]

PLoS ONE May. 22, 2008; 3(5);e2223 [Pubmed: 18493323]

Throughput

  • Low Throughput

Ontology Terms

  • phenotype: heat sensitivity (APO:0000147)

Additional Notes

  • pph21 pph22 CDC5 triple mutant

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
CDC5 PPH21
Dosage Lethality
Dosage Lethality

A genetic interaction is inferred when over expression or increased dosage of one gene causes lethality in a strain that is mutated or deleted for another gene.

Low/High-BioGRID
164013

Curated By

  • BioGRID