BAIT

HSP82

HSP90, Hsp90 family chaperone HSP82, L000000822, YPL240C
Hsp90 chaperone; redundant in function with Hsc82p; required for pheromone signaling, negative regulation of Hsf1p; docks with Tom70p for mitochondrial preprotein delivery; promotes telomerase DNA binding, nucleotide addition; protein abundance increases in response to DNA replication stress; contains two acid-rich unstructured regions that promote solubility of chaperone-substrate complexes; HSP82 has a paralog, HSC82, that arose from the whole genome duplication
Saccharomyces cerevisiae (S288c)
PREY

SEC28

ANU2, L000004402, YIL076W
Epsilon-COP subunit of the coatomer; regulates retrograde Golgi-to-ER protein traffic; stabilizes Cop1p, the alpha-COP and the coatomer complex; non-essential for cell growth; protein abundance increases in response to DNA replication stress
GO Process (3)
GO Function (0)
GO Component (2)
Saccharomyces cerevisiae (S288c)

Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Publication

Diverse cellular functions of the Hsp90 molecular chaperone uncovered using systems approaches.

McClellan AJ, Xia Y, Deutschbauer AM, Davis RW, Gerstein M, Frydman J

A comprehensive understanding of the cellular functions of the Hsp90 molecular chaperone has remained elusive. Although Hsp90 is essential, highly abundant under normal conditions, and further induced by environmental stress, only a limited number of Hsp90 "clients" have been identified. To define Hsp90 function, a panel of genome-wide chemical-genetic screens in Saccharomyces cerevisiae were combined with bioinformatic analyses. This approach ... [more]

Cell Oct. 05, 2007; 131(1);121-35 [Pubmed: 17923092]

Throughput

  • High Throughput

Ontology Terms

  • phenotype: vegetative growth (APO:0000106)

Additional Notes

  • A genome-wide chemical-genetic screen was used to identify deletion strains whose growth was negatively affected when Hsp90 function was compromised using the HSP90-inhibiting drug, macbecin II.

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
HSP82 SEC28
Affinity Capture-MS
Affinity Capture-MS

An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods.

High-BioGRID
-
HSP82 SEC28
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

High-BioGRID
167046

Curated By

  • BioGRID