BAIT

HSC82

HSP90, Hsp90 family chaperone HSC82, L000000813, YMR186W
Cytoplasmic chaperone of the Hsp90 family; plays a role in determining prion variants; redundant in function and nearly identical with Hsp82p, and together they are essential; expressed constitutively at 10-fold higher basal levels than HSP82 and induced 2-3 fold by heat shock; contains two acid-rich unstructured regions that promote the solubility of chaperone-substrate complexes; HSC82 has a paralog, HSP82, that arose from the whole genome duplication
Saccharomyces cerevisiae (S288c)
PREY

UTP21

YLR409C
Subunit of U3-containing 90S preribosome and SSU processome complexes; involved in production of 18S rRNA and assembly of small ribosomal subunit; synthetic defect with STI1 Hsp90 cochaperone; human homolog linked to glaucoma; Small Subunit processome is also known as SSU processome
GO Process (2)
GO Function (0)
GO Component (5)
Saccharomyces cerevisiae (S288c)

Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Publication

Diverse cellular functions of the Hsp90 molecular chaperone uncovered using systems approaches.

McClellan AJ, Xia Y, Deutschbauer AM, Davis RW, Gerstein M, Frydman J

A comprehensive understanding of the cellular functions of the Hsp90 molecular chaperone has remained elusive. Although Hsp90 is essential, highly abundant under normal conditions, and further induced by environmental stress, only a limited number of Hsp90 "clients" have been identified. To define Hsp90 function, a panel of genome-wide chemical-genetic screens in Saccharomyces cerevisiae were combined with bioinformatic analyses. This approach ... [more]

Cell Oct. 05, 2007; 131(1);121-35 [Pubmed: 17923092]

Throughput

  • High Throughput

Ontology Terms

  • phenotype: vegetative growth (APO:0000106)

Additional Notes

  • A genome-wide chemical-genetic screen was used to identify deletion strains whose growth was negatively affected when Hsp90 function was compromised using the HSP90-inhibiting drug, macbecin II.

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
UTP21 HSC82
Affinity Capture-Western
Affinity Capture-Western

An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins.

Low-BioGRID
-
HSC82 UTP21
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Low-BioGRID
2386825
HSC82 UTP21
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Low-BioGRID
3310634
HSC82 UTP21
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Low-BioGRID
2386828

Curated By

  • BioGRID