BAIT
TFAP2A
AP-2, AP-2alpha, AP2TF, BOFS, TFAP2, RP1-290I10.1
transcription factor AP-2 alpha (activating enhancer binding protein 2 alpha)
GO Process (28)
GO Function (15)
GO Component (6)
Gene Ontology Biological Process
- bone morphogenesis [ISS]
- cellular response to iron ion [IDA]
- embryonic cranial skeleton morphogenesis [ISS]
- embryonic forelimb morphogenesis [ISS]
- eyelid development in camera-type eye [ISS]
- inner ear morphogenesis [IMP]
- kidney development [IMP]
- negative regulation of apoptotic process [IDA]
- negative regulation of cell proliferation [IDA]
- negative regulation of reactive oxygen species metabolic process [IDA]
- negative regulation of transcription by competitive promoter binding [IDA, IMP]
- negative regulation of transcription from RNA polymerase II promoter [IDA]
- negative regulation of transcription, DNA-templated [IDA]
- oculomotor nerve formation [ISS]
- optic cup structural organization [ISS]
- optic vesicle morphogenesis [ISS]
- palate development [IMP]
- positive regulation of bone mineralization [IDA]
- positive regulation of gene expression [ISS]
- positive regulation of neuron apoptotic process [IDA]
- positive regulation of tooth mineralization [IDA]
- positive regulation of transcription from RNA polymerase II promoter [IDA]
- positive regulation of transcription, DNA-templated [IDA, ISS]
- regulation of cell differentiation [IDA]
- retina layer formation [IEP]
- sensory perception of sound [IMP]
- transcription from RNA polymerase II promoter [IDA]
- trigeminal nerve development [ISS]
Gene Ontology Molecular Function- RNA polymerase II core promoter proximal region sequence-specific DNA binding [IDA]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding transcription factor activity [IDA]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding transcription factor activity involved in negative regulation of transcription [IDA]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding transcription factor activity involved in positive regulation of transcription [IDA]
- RNA polymerase II core promoter sequence-specific DNA binding [IDA]
- chromatin binding [ISS]
- core promoter proximal region sequence-specific DNA binding [IDA]
- protein binding [IPI]
- protein dimerization activity [IDA]
- protein homodimerization activity [TAS]
- sequence-specific DNA binding [IDA]
- sequence-specific DNA binding RNA polymerase II transcription factor activity [IDA]
- transcription coactivator activity [IDA]
- transcription regulatory region DNA binding [IDA]
- transcription regulatory region sequence-specific DNA binding [IDA]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding [IDA]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding transcription factor activity [IDA]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding transcription factor activity involved in negative regulation of transcription [IDA]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding transcription factor activity involved in positive regulation of transcription [IDA]
- RNA polymerase II core promoter sequence-specific DNA binding [IDA]
- chromatin binding [ISS]
- core promoter proximal region sequence-specific DNA binding [IDA]
- protein binding [IPI]
- protein dimerization activity [IDA]
- protein homodimerization activity [TAS]
- sequence-specific DNA binding [IDA]
- sequence-specific DNA binding RNA polymerase II transcription factor activity [IDA]
- transcription coactivator activity [IDA]
- transcription regulatory region DNA binding [IDA]
- transcription regulatory region sequence-specific DNA binding [IDA]
Gene Ontology Cellular Component
Homo sapiens
PREY
MYO18A
MYSPDZ, SPR210
myosin XVIIIA
GO Process (6)
GO Function (6)
GO Component (4)
Gene Ontology Biological Process
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Homo sapiens
Affinity Capture-MS
An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods.
Publication
Dual proteome-scale networks reveal cell-specific remodeling of the human interactome.
Thousands of interactions assemble proteins into modules that impart spatial and functional organization to the cellular proteome. Through affinity-purification mass spectrometry, we have created two proteome-scale, cell-line-specific interaction networks. The first, BioPlex 3.0, results from affinity purification of 10,128 human proteins-half the proteome-in 293T cells and includes 118,162 interactions among 14,586 proteins. The second results from 5,522 immunoprecipitations in HCT116 ... [more]
Cell May. 27, 2021; 184(11);3022-3040.e28 [Pubmed: 33961781]
Quantitative Score
- 0.941210789 [compPASS Score]
Throughput
- High Throughput
Additional Notes
- BioPlex HCT HCT116 cells CompPASS score = 0.941210789, threshold = 0.75. Quantitative scores are calculated by CompPASS-Plus (Huttlin et al. Cell 2015, PMID: 26186194). The 0.75 threshold represents the top 2% of scores in HCT116.
- Only scores from within the same cell line in BioPlex HCT (PMID: 33961781) should be compared directly. For comparison of HEK293T and HCT116 interaction networks with relaxed threshold = 0.1, see BioPlex Interactome (https://bioplex.hms.harvard.edu/index.php).
Curated By
- BioGRID