STUB1
Gene Ontology Biological Process
- cellular response to misfolded protein [IDA]
- misfolded or incompletely synthesized protein catabolic process [IDA]
- negative regulation of transforming growth factor beta receptor signaling pathway [TAS]
- positive regulation of chaperone-mediated protein complex assembly [IDA]
- positive regulation of proteasomal ubiquitin-dependent protein catabolic process [IDA]
- positive regulation of protein ubiquitination [IDA]
- proteasome-mediated ubiquitin-dependent protein catabolic process [IDA]
- protein K63-linked ubiquitination [IDA]
- protein autoubiquitination [IDA]
- protein maturation [TAS]
- protein polyubiquitination [IDA, IMP]
- regulation of glucocorticoid metabolic process [IDA]
- transforming growth factor beta receptor signaling pathway [TAS]
- ubiquitin-dependent SMAD protein catabolic process [IDA]
- ubiquitin-dependent protein catabolic process [IMP]
Gene Ontology Molecular Function- G-protein coupled receptor binding [IPI]
- Hsp70 protein binding [IDA]
- Hsp90 protein binding [IDA]
- SMAD binding [IDA]
- TPR domain binding [IDA]
- enzyme binding [IPI]
- kinase binding [IPI]
- misfolded protein binding [IDA]
- protein binding [IPI]
- protein binding, bridging [TAS]
- protein homodimerization activity [ISS]
- ubiquitin protein ligase activity [IDA]
- ubiquitin protein ligase binding [IPI]
- ubiquitin-protein transferase activity [IDA, IMP, TAS]
- ubiquitin-ubiquitin ligase activity [ISS]
- G-protein coupled receptor binding [IPI]
- Hsp70 protein binding [IDA]
- Hsp90 protein binding [IDA]
- SMAD binding [IDA]
- TPR domain binding [IDA]
- enzyme binding [IPI]
- kinase binding [IPI]
- misfolded protein binding [IDA]
- protein binding [IPI]
- protein binding, bridging [TAS]
- protein homodimerization activity [ISS]
- ubiquitin protein ligase activity [IDA]
- ubiquitin protein ligase binding [IPI]
- ubiquitin-protein transferase activity [IDA, IMP, TAS]
- ubiquitin-ubiquitin ligase activity [ISS]
Gene Ontology Cellular Component
CYP3A4
Gene Ontology Biological Process
- alkaloid catabolic process [IDA]
- androgen metabolic process [TAS]
- calcitriol biosynthetic process from calciol [IDA]
- drug catabolic process [IDA, IMP]
- drug metabolic process [IDA]
- exogenous drug catabolic process [IDA]
- heterocycle metabolic process [IDA]
- lipid metabolic process [TAS]
- monoterpenoid metabolic process [IDA]
- oxidation-reduction process [IDA]
- oxidative demethylation [IDA]
- small molecule metabolic process [TAS]
- steroid catabolic process [IMP]
- steroid metabolic process [IMP]
- vitamin D metabolic process [IC]
- xenobiotic metabolic process [TAS]
Gene Ontology Molecular Function- caffeine oxidase activity [IDA]
- enzyme binding [IPI]
- iron ion binding [IDA]
- monooxygenase activity [IDA, ISS]
- oxidoreductase activity [IDA]
- oxygen binding [TAS]
- steroid binding [IDA]
- steroid hydroxylase activity [IMP]
- testosterone 6-beta-hydroxylase activity [IMP]
- vitamin D 24-hydroxylase activity [IDA]
- vitamin D3 25-hydroxylase activity [IDA]
- caffeine oxidase activity [IDA]
- enzyme binding [IPI]
- iron ion binding [IDA]
- monooxygenase activity [IDA, ISS]
- oxidoreductase activity [IDA]
- oxygen binding [TAS]
- steroid binding [IDA]
- steroid hydroxylase activity [IMP]
- testosterone 6-beta-hydroxylase activity [IMP]
- vitamin D 24-hydroxylase activity [IDA]
- vitamin D3 25-hydroxylase activity [IDA]
Gene Ontology Cellular Component
Biochemical Activity (Ubiquitination)
An interaction is inferred from the biochemical effect of one protein upon another, for example, GTP-GDP exchange activity or phosphorylation of a substrate by a kinase. The bait protein executes the activity on the substrate hit protein. A Modification value is recorded for interactions of this type with the possible values Phosphorylation, Ubiquitination, Sumoylation, Dephosphorylation, Methylation, Prenylation, Acetylation, Deubiquitination, Proteolytic Processing, Glucosylation, Nedd(Rub1)ylation, Deacetylation, No Modification, Demethylation.
Publication
CYP3A4 ubiquitination by gp78 (the tumor autocrine motility factor receptor, AMFR) and CHIP E3 ligases.
Human liver CYP3A4 is an endoplasmic reticulum (ER)-anchored hemoprotein responsible for the metabolism of >50% of clinically prescribed drugs. After heterologous expression in Saccharomyces cerevisiae, it is degraded via the ubiquitin (Ub)-dependent 26S proteasomal pathway that utilizes Ubc7p/Cue1p, but none of the canonical Ub-ligases (E3s) Hrd1p/Hrd3p, Doa10p, and Rsp5p involved in ER-associated degradation (ERAD). To identify an Ub-ligase capable of ... [more]
Throughput
- Low Throughput
Related interactions
Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
---|---|---|---|---|---|---|
CYP3A4 STUB1 | Affinity Capture-MS Affinity Capture-MS An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods. | Low | - | BioGRID | - | |
STUB1 CYP3A4 | Biochemical Activity Biochemical Activity An interaction is inferred from the biochemical effect of one protein upon another, for example, GTP-GDP exchange activity or phosphorylation of a substrate by a kinase. The bait protein executes the activity on the substrate hit protein. A Modification value is recorded for interactions of this type with the possible values Phosphorylation, Ubiquitination, Sumoylation, Dephosphorylation, Methylation, Prenylation, Acetylation, Deubiquitination, Proteolytic Processing, Glucosylation, Nedd(Rub1)ylation, Deacetylation, No Modification, Demethylation. | Low | - | BioGRID | 1035736 | |
STUB1 CYP3A4 | Biochemical Activity Biochemical Activity An interaction is inferred from the biochemical effect of one protein upon another, for example, GTP-GDP exchange activity or phosphorylation of a substrate by a kinase. The bait protein executes the activity on the substrate hit protein. A Modification value is recorded for interactions of this type with the possible values Phosphorylation, Ubiquitination, Sumoylation, Dephosphorylation, Methylation, Prenylation, Acetylation, Deubiquitination, Proteolytic Processing, Glucosylation, Nedd(Rub1)ylation, Deacetylation, No Modification, Demethylation. | Low | - | BioGRID | 1238924 |
Curated By
- BioGRID