BAIT
YPD1
L000003285, YDL235C
Osmotic stress-responsive phosphorelay intermediate sensor protein; phosphorylated by the plasma membrane sensor Sln1p in response to osmotic stress and then in turn phosphorylates the response regulators Ssk1p in the cytosol and Skn7p in the nucleus
GO Process (1)
GO Function (2)
GO Component (2)
Gene Ontology Biological Process
Gene Ontology Molecular Function
Saccharomyces cerevisiae (S288c)
PREY
SLT2
BYC2, LYT2, MPK1, SLK2, mitogen-activated serine/threonine-protein kinase SLT2, L000001919, YHR030C
Serine/threonine MAP kinase; involved in regulating maintenance of cell wall integrity, cell cycle progression, and nuclear mRNA retention in heat shock; required for mitophagy and pexophagy; affects recruitment of mitochondria to phagophore assembly site (PAS); plays a role in adaptive response of cells to cold; regulated by the PKC1-mediated signaling pathway; SLT2 has a paralog, KDX1, that arose from the whole genome duplication
GO Process (11)
GO Function (3)
GO Component (5)
Gene Ontology Biological Process
- UFP-specific transcription factor mRNA processing involved in endoplasmic reticulum unfolded protein response [IMP]
- barrier septum assembly [IGI]
- endoplasmic reticulum unfolded protein response [IDA, IMP]
- fungal-type cell wall biogenesis [IGI]
- peroxisome degradation [IMP]
- protein phosphorylation [IDA, IMP]
- regulation of cell size [IMP]
- regulation of fungal-type cell wall organization [IGI, IMP]
- regulation of transcription factor import into nucleus [IMP]
- response to acidic pH [IMP]
- signal transduction [IMP]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Saccharomyces cerevisiae (S288c)
Negative Genetic
Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.
Publication
Functional organization of the S. cerevisiae phosphorylation network.
Reversible protein phosphorylation is a signaling mechanism involved in all cellular processes. To create a systems view of the signaling apparatus in budding yeast, we generated an epistatic miniarray profile (E-MAP) comprised of 100,000 pairwise, quantitative genetic interactions, including virtually all protein and small-molecule kinases and phosphatases as well as key cellular regulators. Quantitative genetic interaction mapping reveals factors working ... [more]
Cell Mar. 06, 2009; 136(5);952-63 [Pubmed: 19269370]
Quantitative Score
- -9.795046 [SGA Score]
Throughput
- High Throughput
Ontology Terms
- phenotype: colony size (APO:0000063)
Additional Notes
- An Epistatic MiniArray Profile (E-MAP) analysis was used to quantitatively score genetic interactions based on fitness defects estimated from the colony size of double versus single mutants. Genetic interactions were considered significant if they had an S score > 2.0 for positive interactions (suppression) and S score < -2.5 for negative interactions (synthetic sick/lethality).
Curated By
- BioGRID