BAIT

REG1

HEX2, PZF240, SPP43, SRN1, protein phosphatase regulator REG1, L000001609, YDR028C
Regulatory subunit of type 1 protein phosphatase Glc7p; involved in negative regulation of glucose-repressible genes; involved in regulation of the nucleocytoplasmic shuttling of Hxk2p; REG1 has a paralog, REG2, that arose from the whole genome duplication
Saccharomyces cerevisiae (S288c)
PREY

KCC4

YCL024W
Protein kinase of the bud neck involved in the septin checkpoint; associates with septin proteins, negatively regulates Swe1p by phosphorylation, shows structural homology to bud neck kinases Gin4p and Hsl1p; KCC4 has a paralog, GIN4, that arose from the whole genome duplication
Saccharomyces cerevisiae (S288c)

Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

Publication

Functional organization of the S. cerevisiae phosphorylation network.

Fiedler D, Braberg H, Mehta M, Chechik G, Cagney G, Mukherjee P, Silva AC, Shales M, Collins SR, van Wageningen S, Kemmeren P, Holstege FC, Weissman JS, Keogh MC, Koller D, Shokat KM, Krogan NJ

Reversible protein phosphorylation is a signaling mechanism involved in all cellular processes. To create a systems view of the signaling apparatus in budding yeast, we generated an epistatic miniarray profile (E-MAP) comprised of 100,000 pairwise, quantitative genetic interactions, including virtually all protein and small-molecule kinases and phosphatases as well as key cellular regulators. Quantitative genetic interaction mapping reveals factors working ... [more]

Cell Mar. 06, 2009; 136(5);952-63 [Pubmed: 19269370]

Quantitative Score

  • -3.428682 [SGA Score]

Throughput

  • High Throughput

Ontology Terms

  • phenotype: colony size (APO:0000063)

Additional Notes

  • An Epistatic MiniArray Profile (E-MAP) analysis was used to quantitatively score genetic interactions based on fitness defects estimated from the colony size of double versus single mutants. Genetic interactions were considered significant if they had an S score > 2.0 for positive interactions (suppression) and S score < -2.5 for negative interactions (synthetic sick/lethality).

Curated By

  • BioGRID