BAIT
ALK2
protein kinase ALK2, YBL009W
Protein kinase; along with its paralog, ALK1, required for proper spindle positioning and nuclear segregation following mitotic arrest, proper organization of cell polarity factors in mitosis, proper localization of formins and polarity factors, and survival in cells that activate spindle assembly checkpoint; phosphorylated in response to DNA damage; ALK2 has a paralog, ALK1, that arose from the whole genome duplication; similar to mammalian haspins
GO Process (3)
GO Function (2)
GO Component (0)
Gene Ontology Biological Process
Gene Ontology Molecular Function
Saccharomyces cerevisiae (S288c)
PREY
SIT4
PPH1, type 2A-related serine/threonine-protein phosphatase SIT4, L000001901, YDL047W
Type 2A-related serine-threonine phosphatase; functions in the G1/S transition of the mitotic cycle; regulator of COPII coat dephosphorylation; required for ER to Golgi traffic; interacts with Hrr25p kinase; cytoplasmic and nuclear protein that modulates functions mediated by Pkc1p including cell wall and actin cytoskeleton organization; similar to human PP6
GO Process (10)
GO Function (1)
GO Component (2)
Gene Ontology Biological Process
- DNA repair [IMP]
- G1/S transition of mitotic cell cycle [IGI]
- TOR signaling [IMP]
- actin cytoskeleton organization [IMP]
- cellular response to oxidative stress [IMP]
- dephosphorylation [IMP]
- fungal-type cell wall organization [IMP]
- intracellular signal transduction [IMP]
- replicative cell aging [IMP]
- tRNA wobble uridine modification [IMP]
Gene Ontology Molecular Function
Saccharomyces cerevisiae (S288c)
Positive Genetic
Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a less severe fitness defect than expected under a given condition. This term is reserved for high or low throughput studies with scores.
Publication
Functional organization of the S. cerevisiae phosphorylation network.
Reversible protein phosphorylation is a signaling mechanism involved in all cellular processes. To create a systems view of the signaling apparatus in budding yeast, we generated an epistatic miniarray profile (E-MAP) comprised of 100,000 pairwise, quantitative genetic interactions, including virtually all protein and small-molecule kinases and phosphatases as well as key cellular regulators. Quantitative genetic interaction mapping reveals factors working ... [more]
Cell Mar. 06, 2009; 136(5);952-63 [Pubmed: 19269370]
Quantitative Score
- 2.945066 [SGA Score]
Throughput
- High Throughput
Ontology Terms
- colony size (APO:0000063)
Additional Notes
- An Epistatic MiniArray Profile (E-MAP) analysis was used to quantitatively score genetic interactions based on fitness defects estimated from the colony size of double versus single mutants. Genetic interactions were considered significant if they had an S score > 2.0 for positive interactions (suppression) and S score < -2.5 for negative interactions (synthetic sick/lethality).
Curated By
- BioGRID