BAIT
CDC55
TMR4, protein phosphatase 2A regulatory subunit CDC55, L000000282, S000029602, L000003191, YGL190C
Non-essential regulatory subunit B of protein phosphatase 2A (PP2A); localization to cytoplasm requires Zds1p and Zds2p and promotes mitotic entry; localization to nucleus prevents mitotic exit; required for correct nuclear division and chromosome segregation in meiosis; maintains nucleolar sequestration of Cdc14p during early meiosis; limits formation of PP2A-Rts1p holocomplexes to ensure timely dissolution of sister chromosome cohesion; homolog of mammalian B55
GO Process (7)
GO Function (1)
GO Component (6)
Gene Ontology Biological Process
- cytokinesis after mitosis checkpoint [IGI]
- negative regulation of exit from mitosis [IMP]
- positive regulation of G2/M transition of mitotic cell cycle [IMP]
- positive regulation of protein localization to nucleus [IMP]
- positive regulation of transcription by transcription factor localization [IMP]
- protein dephosphorylation [IDA, IMP]
- regulation of mitotic cell cycle spindle assembly checkpoint [IMP]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Saccharomyces cerevisiae (S288c)
PREY
NUP84
L000003137, YDL116W
Subunit of the Nup84p subcomplex of the nuclear pore complex (NPC); contributes to nucleocytoplasmic transport and NPC biogenesis; also plays roles in several processes that may require localization of genes or chromosomes at the nuclear periphery, including double-strand break repair, transcription and chromatin silencing; homologous to human NUP107
GO Process (12)
GO Function (1)
GO Component (3)
Gene Ontology Biological Process
- cellular response to DNA damage stimulus [IMP]
- chromatin silencing at silent mating-type cassette [IDA]
- double-strand break repair [IGI, IMP]
- mRNA export from nucleus [IMP]
- mRNA export from nucleus in response to heat stress [IMP]
- maintenance of chromatin silencing at telomere [IMP]
- nuclear pore distribution [IMP]
- positive regulation of transcription from RNA polymerase II promoter [IMP]
- positive regulation of transcription, DNA-templated [IDA, IGI, IMP]
- posttranscriptional tethering of RNA polymerase II gene DNA at nuclear periphery [IMP]
- protein import into nucleus [IMP]
- telomere tethering at nuclear periphery [IMP]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Saccharomyces cerevisiae (S288c)
Negative Genetic
Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.
Publication
Functional organization of the S. cerevisiae phosphorylation network.
Reversible protein phosphorylation is a signaling mechanism involved in all cellular processes. To create a systems view of the signaling apparatus in budding yeast, we generated an epistatic miniarray profile (E-MAP) comprised of 100,000 pairwise, quantitative genetic interactions, including virtually all protein and small-molecule kinases and phosphatases as well as key cellular regulators. Quantitative genetic interaction mapping reveals factors working ... [more]
Cell Mar. 06, 2009; 136(5);952-63 [Pubmed: 19269370]
Quantitative Score
- -9.184997 [SGA Score]
Throughput
- High Throughput
Ontology Terms
- colony size (APO:0000063)
Additional Notes
- An Epistatic MiniArray Profile (E-MAP) analysis was used to quantitatively score genetic interactions based on fitness defects estimated from the colony size of double versus single mutants. Genetic interactions were considered significant if they had an S score > 2.0 for positive interactions (suppression) and S score < -2.5 for negative interactions (synthetic sick/lethality).
Curated By
- BioGRID