BAIT
PTC4
GCT1, type 2C protein phosphatase PTC4, YBR125C
Cytoplasmic type 2C protein phosphatase (PP2C); identified as a high-copy number suppressor of cnb1 mpk1 synthetic lethality; overexpression decreases high-osmolarity induced Hog1p phosphorylation and kinase activity
GO Process (1)
GO Function (1)
GO Component (1)
Gene Ontology Biological Process
Gene Ontology Molecular Function
Saccharomyces cerevisiae (S288c)
PREY
KCS1
inositol polyphosphate kinase KCS1, L000000889, YDR017C
Inositol hexakisphosphate and inositol heptakisphosphate kinase; generation of high energy inositol pyrophosphates by Kcs1p is required for many processes such as vacuolar biogenesis, stress response, and telomere maintenance; inositol hexakisphosphate is also known as IP6; inositol heptakisphosphate is also known as IP7
GO Process (2)
GO Function (4)
GO Component (1)
Gene Ontology Biological Process
Gene Ontology Molecular Function
Saccharomyces cerevisiae (S288c)
Negative Genetic
Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.
Publication
Functional organization of the S. cerevisiae phosphorylation network.
Reversible protein phosphorylation is a signaling mechanism involved in all cellular processes. To create a systems view of the signaling apparatus in budding yeast, we generated an epistatic miniarray profile (E-MAP) comprised of 100,000 pairwise, quantitative genetic interactions, including virtually all protein and small-molecule kinases and phosphatases as well as key cellular regulators. Quantitative genetic interaction mapping reveals factors working ... [more]
Cell Mar. 06, 2009; 136(5);952-63 [Pubmed: 19269370]
Quantitative Score
- -3.657475 [SGA Score]
Throughput
- High Throughput
Ontology Terms
- phenotype: colony size (APO:0000063)
Additional Notes
- An Epistatic MiniArray Profile (E-MAP) analysis was used to quantitatively score genetic interactions based on fitness defects estimated from the colony size of double versus single mutants. Genetic interactions were considered significant if they had an S score > 2.0 for positive interactions (suppression) and S score < -2.5 for negative interactions (synthetic sick/lethality).
Curated By
- BioGRID