BAIT

DUN1

serine/threonine protein kinase DUN1, L000000531, YDL101C
Cell-cycle checkpoint serine-threonine kinase; required for DNA damage-induced transcription of certain target genes, phosphorylation of Rad55p and Sml1p, and transient G2/M arrest after DNA damage; Mec1p and Dun1p function in same pathway to regulate both dNTP pools and telomere length; also regulates postreplicative DNA repair
GO Process (3)
GO Function (1)
GO Component (1)

Gene Ontology Molecular Function

Gene Ontology Cellular Component

Saccharomyces cerevisiae (S288c)
PREY

BMH1

APR6, 14-3-3 family protein BMH1, L000000185, YER177W
14-3-3 protein, major isoform; controls proteome at post-transcriptional level, binds proteins and DNA, involved in regulation of exocytosis, vesicle transport, Ras/MAPK and rapamycin-sensitive signaling, aggresome formation, spindle position checkpoint; protein increases in abundance and relative distribution to the nucleus increases upon DNA replication stress; antiapoptotic gene similar to human 14-3-3; BMH1 has a paralog, BMH2, that arose from whole genome duplication
Saccharomyces cerevisiae (S288c)

Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

Publication

Functional organization of the S. cerevisiae phosphorylation network.

Fiedler D, Braberg H, Mehta M, Chechik G, Cagney G, Mukherjee P, Silva AC, Shales M, Collins SR, van Wageningen S, Kemmeren P, Holstege FC, Weissman JS, Keogh MC, Koller D, Shokat KM, Krogan NJ

Reversible protein phosphorylation is a signaling mechanism involved in all cellular processes. To create a systems view of the signaling apparatus in budding yeast, we generated an epistatic miniarray profile (E-MAP) comprised of 100,000 pairwise, quantitative genetic interactions, including virtually all protein and small-molecule kinases and phosphatases as well as key cellular regulators. Quantitative genetic interaction mapping reveals factors working ... [more]

Cell Mar. 06, 2009; 136(5);952-63 [Pubmed: 19269370]

Quantitative Score

  • -5.494482 [SGA Score]

Throughput

  • High Throughput

Ontology Terms

  • phenotype: colony size (APO:0000063)

Additional Notes

  • An Epistatic MiniArray Profile (E-MAP) analysis was used to quantitatively score genetic interactions based on fitness defects estimated from the colony size of double versus single mutants. Genetic interactions were considered significant if they had an S score > 2.0 for positive interactions (suppression) and S score < -2.5 for negative interactions (synthetic sick/lethality).

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
BMH1 DUN1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-7.1379BioGRID
215626
DUN1 BMH1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.2199BioGRID
364097
DUN1 BMH1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.2462BioGRID
2089993
DUN1 BMH1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.22BioGRID
910499
DUN1 BMH1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-11.55BioGRID
2357853
DUN1 BMH1
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

High-BioGRID
456459

Curated By

  • BioGRID