BAIT

RTK1

putative serine/threonine protein kinase RTK1, YDL025C
Putative protein kinase, potentially phosphorylated by Cdc28p; interacts with ribosome biogenesis factors, Cka2, Gus1 and Arc1; protein abundance increases in response to DNA replication stress
GO Process (0)
GO Function (2)
GO Component (0)
Saccharomyces cerevisiae (S288c)
PREY

THR1

homoserine kinase, L000002298, YHR025W
Homoserine kinase; conserved protein required for threonine biosynthesis; long-lived protein that is preferentially retained in mother cells and forms cytoplasmic filaments; expression is regulated by the GCN4-mediated general amino acid control pathway
GO Process (4)
GO Function (1)
GO Component (0)
Saccharomyces cerevisiae (S288c)

Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

Publication

Functional organization of the S. cerevisiae phosphorylation network.

Fiedler D, Braberg H, Mehta M, Chechik G, Cagney G, Mukherjee P, Silva AC, Shales M, Collins SR, van Wageningen S, Kemmeren P, Holstege FC, Weissman JS, Keogh MC, Koller D, Shokat KM, Krogan NJ

Reversible protein phosphorylation is a signaling mechanism involved in all cellular processes. To create a systems view of the signaling apparatus in budding yeast, we generated an epistatic miniarray profile (E-MAP) comprised of 100,000 pairwise, quantitative genetic interactions, including virtually all protein and small-molecule kinases and phosphatases as well as key cellular regulators. Quantitative genetic interaction mapping reveals factors working ... [more]

Cell Mar. 06, 2009; 136(5);952-63 [Pubmed: 19269370]

Quantitative Score

  • -4.593014 [SGA Score]

Throughput

  • High Throughput

Ontology Terms

  • phenotype: colony size (APO:0000063)

Additional Notes

  • An Epistatic MiniArray Profile (E-MAP) analysis was used to quantitatively score genetic interactions based on fitness defects estimated from the colony size of double versus single mutants. Genetic interactions were considered significant if they had an S score > 2.0 for positive interactions (suppression) and S score < -2.5 for negative interactions (synthetic sick/lethality).

Curated By

  • BioGRID