BAIT
SSN3
CDK8, GIG2, NUT7, RYE5, SRB10, SSX7, UME5, URR1, cyclin-dependent serine/threonine protein kinase SSN3, L000002795, S000029631, L000002443, S000029520, L000002103, YPL042C
Cyclin-dependent protein kinase; component of RNA polymerase II holoenzyme; involved in phosphorylation of the RNA polymerase II C-terminal domain; involved in glucose repression
GO Process (7)
GO Function (3)
GO Component (1)
Gene Ontology Biological Process
- negative regulation of filamentous growth [IGI, IMP]
- negative regulation of transcription from RNA polymerase II promoter [IMP, IPI]
- nuclear-transcribed mRNA catabolic process, non-stop decay [IMP]
- phosphorylation of RNA polymerase II C-terminal domain [IDA, IMP]
- positive regulation of transcription from RNA polymerase II promoter by galactose [IMP]
- protein destabilization [IMP]
- protein phosphorylation [IDA, IMP]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Saccharomyces cerevisiae (S288c)
PREY
TPK1
PKA1, SRA3, cAMP-dependent protein kinase catalytic subunit TPK1, L000002045, YJL164C
cAMP-dependent protein kinase catalytic subunit; promotes vegetative growth in response to nutrients via the Ras-cAMP signaling pathway; inhibited by regulatory subunit Bcy1p in the absence of cAMP; phosphorylates and inhibits Whi3p to promote G1/S phase passage; partially redundant with Tpk2p and Tpk3p; phosphorylates pre-Tom40p, which impairs its import into mitochondria under non-respiratory conditions; TPK1 has a paralog, TPK3, that arose from the whole genome duplication
GO Process (3)
GO Function (2)
GO Component (3)
Gene Ontology Biological Process
Gene Ontology Molecular Function
Saccharomyces cerevisiae (S288c)
Negative Genetic
Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.
Publication
Functional organization of the S. cerevisiae phosphorylation network.
Reversible protein phosphorylation is a signaling mechanism involved in all cellular processes. To create a systems view of the signaling apparatus in budding yeast, we generated an epistatic miniarray profile (E-MAP) comprised of 100,000 pairwise, quantitative genetic interactions, including virtually all protein and small-molecule kinases and phosphatases as well as key cellular regulators. Quantitative genetic interaction mapping reveals factors working ... [more]
Cell Mar. 06, 2009; 136(5);952-63 [Pubmed: 19269370]
Quantitative Score
- -2.822912 [SGA Score]
Throughput
- High Throughput
Ontology Terms
- phenotype: colony size (APO:0000063)
Additional Notes
- An Epistatic MiniArray Profile (E-MAP) analysis was used to quantitatively score genetic interactions based on fitness defects estimated from the colony size of double versus single mutants. Genetic interactions were considered significant if they had an S score > 2.0 for positive interactions (suppression) and S score < -2.5 for negative interactions (synthetic sick/lethality).
Curated By
- BioGRID