BAIT
BMH1
APR6, 14-3-3 family protein BMH1, L000000185, YER177W
14-3-3 protein, major isoform; controls proteome at post-transcriptional level, binds proteins and DNA, involved in regulation of exocytosis, vesicle transport, Ras/MAPK and rapamycin-sensitive signaling, aggresome formation, spindle position checkpoint; protein increases in abundance and relative distribution to the nucleus increases upon DNA replication stress; antiapoptotic gene similar to human 14-3-3; BMH1 has a paralog, BMH2, that arose from whole genome duplication
GO Process (12)
GO Function (3)
GO Component (3)
Gene Ontology Biological Process
- DNA damage checkpoint [IMP]
- Ras protein signal transduction [IGI]
- aggresome assembly [IMP]
- ascospore formation [IGI]
- fungal-type cell wall chitin biosynthetic process [IGI]
- glycogen metabolic process [IGI]
- mitotic spindle orientation checkpoint [IGI]
- negative regulation of apoptotic process [IMP]
- negative regulation of transcription from RNA polymerase II promoter [IMP]
- negative regulation of ubiquitin-protein ligase activity involved in mitotic cell cycle [IPI]
- pseudohyphal growth [IGI]
- signal transduction involved in filamentous growth [IGI]
Gene Ontology Molecular Function
Saccharomyces cerevisiae (S288c)
PREY
OCA1
putative tyrosine protein phosphatase OCA1, YNL099C
Putative protein tyrosine phosphatase; required for cell cycle arrest in response to oxidative damage of DNA
GO Process (1)
GO Function (1)
GO Component (1)
Gene Ontology Biological Process
Gene Ontology Molecular Function
Saccharomyces cerevisiae (S288c)
Negative Genetic
Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.
Publication
Functional organization of the S. cerevisiae phosphorylation network.
Reversible protein phosphorylation is a signaling mechanism involved in all cellular processes. To create a systems view of the signaling apparatus in budding yeast, we generated an epistatic miniarray profile (E-MAP) comprised of 100,000 pairwise, quantitative genetic interactions, including virtually all protein and small-molecule kinases and phosphatases as well as key cellular regulators. Quantitative genetic interaction mapping reveals factors working ... [more]
Cell Mar. 06, 2009; 136(5);952-63 [Pubmed: 19269370]
Quantitative Score
- -2.724987 [SGA Score]
Throughput
- High Throughput
Ontology Terms
- phenotype: colony size (APO:0000063)
Additional Notes
- An Epistatic MiniArray Profile (E-MAP) analysis was used to quantitatively score genetic interactions based on fitness defects estimated from the colony size of double versus single mutants. Genetic interactions were considered significant if they had an S score > 2.0 for positive interactions (suppression) and S score < -2.5 for negative interactions (synthetic sick/lethality).
Curated By
- BioGRID