BAIT
GCN2
AAS1, AAS102, NDR2, serine/threonine-protein kinase GCN2, L000000681, YDR283C
Protein kinase; phosphorylates the alpha-subunit of translation initiation factor eIF2 (Sui2p) in response to starvation; activated by uncharged tRNAs and the Gcn1p-Gcn20p complex; contributes to DNA damage checkpoint control
GO Process (5)
GO Function (2)
GO Component (1)
Gene Ontology Biological Process
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Saccharomyces cerevisiae (S288c)
PREY
TOP1
MAK1, MAK17, DNA topoisomerase 1, L000002319, YOL006C
Topoisomerase I; nuclear enzyme that relieves torsional strain in DNA by cleaving and re-sealing the phosphodiester backbone; relaxes both positively and negatively supercoiled DNA; functions in replication, transcription, and recombination; role in processing ribonucleoside monophosphates in genomic DNA into irreversible single-strand breaks
GO Process (9)
GO Function (2)
GO Component (3)
Gene Ontology Biological Process
- DNA strand elongation involved in DNA replication [IMP]
- DNA topological change [IDA, IMP]
- chromatin assembly or disassembly [IMP]
- chromatin silencing at rDNA [IMP]
- mitotic chromosome condensation [IGI, IMP]
- nuclear migration [IGI, IMP]
- regulation of mitotic recombination [IMP]
- regulation of transcription from RNA polymerase II promoter [IMP]
- transcription elongation from RNA polymerase II promoter [IMP]
Gene Ontology Molecular Function
Saccharomyces cerevisiae (S288c)
Negative Genetic
Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.
Publication
Functional organization of the S. cerevisiae phosphorylation network.
Reversible protein phosphorylation is a signaling mechanism involved in all cellular processes. To create a systems view of the signaling apparatus in budding yeast, we generated an epistatic miniarray profile (E-MAP) comprised of 100,000 pairwise, quantitative genetic interactions, including virtually all protein and small-molecule kinases and phosphatases as well as key cellular regulators. Quantitative genetic interaction mapping reveals factors working ... [more]
Cell Mar. 06, 2009; 136(5);952-63 [Pubmed: 19269370]
Quantitative Score
- -4.417857 [SGA Score]
Throughput
- High Throughput
Ontology Terms
- phenotype: colony size (APO:0000063)
Additional Notes
- An Epistatic MiniArray Profile (E-MAP) analysis was used to quantitatively score genetic interactions based on fitness defects estimated from the colony size of double versus single mutants. Genetic interactions were considered significant if they had an S score > 2.0 for positive interactions (suppression) and S score < -2.5 for negative interactions (synthetic sick/lethality).
Curated By
- BioGRID