SSN3
Gene Ontology Biological Process
- negative regulation of filamentous growth [IGI, IMP]
- negative regulation of transcription from RNA polymerase II promoter [IMP, IPI]
- nuclear-transcribed mRNA catabolic process, non-stop decay [IMP]
- phosphorylation of RNA polymerase II C-terminal domain [IDA, IMP]
- positive regulation of transcription from RNA polymerase II promoter by galactose [IMP]
- protein destabilization [IMP]
- protein phosphorylation [IDA, IMP]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
CLB5
Gene Ontology Biological Process
- G1/S transition of mitotic cell cycle [IEP, IMP]
- G2/M transition of mitotic cell cycle [IEP, IMP]
- positive regulation of DNA replication [IMP]
- positive regulation of spindle pole body separation [IGI]
- premeiotic DNA replication [IGI, IMP]
- regulation of cyclin-dependent protein serine/threonine kinase activity [IDA]
- spindle assembly [IGI, IMP]
Gene Ontology Molecular Function
Negative Genetic
Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.
Publication
Functional organization of the S. cerevisiae phosphorylation network.
Reversible protein phosphorylation is a signaling mechanism involved in all cellular processes. To create a systems view of the signaling apparatus in budding yeast, we generated an epistatic miniarray profile (E-MAP) comprised of 100,000 pairwise, quantitative genetic interactions, including virtually all protein and small-molecule kinases and phosphatases as well as key cellular regulators. Quantitative genetic interaction mapping reveals factors working ... [more]
Quantitative Score
- -5.517273 [SGA Score]
Throughput
- High Throughput
Ontology Terms
- phenotype: colony size (APO:0000063)
Additional Notes
- An Epistatic MiniArray Profile (E-MAP) analysis was used to quantitatively score genetic interactions based on fitness defects estimated from the colony size of double versus single mutants. Genetic interactions were considered significant if they had an S score > 2.0 for positive interactions (suppression) and S score < -2.5 for negative interactions (synthetic sick/lethality).
Related interactions
Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
---|---|---|---|---|---|---|
CLB5 SSN3 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -5.1933 | BioGRID | 217327 | |
SSN3 CLB5 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -0.1748 | BioGRID | 2189505 |
Curated By
- BioGRID