ATM
Gene Ontology Biological Process
- DNA damage induced protein phosphorylation [IDA]
- DNA damage response, signal transduction by p53 class mediator resulting in cell cycle arrest [TAS]
- DNA repair [TAS]
- cell cycle arrest [IMP]
- cellular response to DNA damage stimulus [IMP]
- cellular response to gamma radiation [IDA]
- double-strand break repair [TAS]
- double-strand break repair via homologous recombination [TAS]
- histone mRNA catabolic process [IDA]
- mitotic spindle assembly checkpoint [IMP]
- negative regulation of B cell proliferation [IMP]
- peptidyl-serine phosphorylation [IDA]
- phosphatidylinositol-3-phosphate biosynthetic process [IMP]
- positive regulation of DNA damage response, signal transduction by p53 class mediator [IMP]
- positive regulation of apoptotic process [IMP]
- pre-B cell allelic exclusion [ISS]
- protein autophosphorylation [IDA]
- protein phosphorylation [IDA]
- reciprocal meiotic recombination [TAS]
- replicative senescence [IMP]
- response to ionizing radiation [IDA]
- signal transduction [TAS]
- signal transduction involved in mitotic G2 DNA damage checkpoint [IMP]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
MAPK1
Gene Ontology Biological Process
- ERBB signaling pathway [IDA]
- ERK1 and ERK2 cascade [IDA, TAS]
- Fc-epsilon receptor signaling pathway [TAS]
- Fc-gamma receptor signaling pathway involved in phagocytosis [TAS]
- JAK-STAT cascade involved in growth hormone signaling pathway [TAS]
- MAPK cascade [TAS]
- MyD88-dependent toll-like receptor signaling pathway [TAS]
- MyD88-independent toll-like receptor signaling pathway [TAS]
- Ras protein signal transduction [TAS]
- TRIF-dependent toll-like receptor signaling pathway [TAS]
- activation of MAPK activity [TAS]
- activation of MAPKK activity [TAS]
- axon guidance [TAS]
- blood coagulation [TAS]
- caveolin-mediated endocytosis [TAS]
- chemotaxis [TAS]
- epidermal growth factor receptor signaling pathway [TAS]
- fibroblast growth factor receptor signaling pathway [TAS]
- innate immune response [TAS]
- insulin receptor signaling pathway [TAS]
- neurotrophin TRK receptor signaling pathway [TAS]
- peptidyl-serine phosphorylation [IDA]
- peptidyl-threonine phosphorylation [ISS]
- platelet activation [TAS]
- positive regulation of peptidyl-threonine phosphorylation [IDA]
- regulation of Golgi inheritance [TAS]
- regulation of cytoskeleton organization [TAS]
- regulation of early endosome to late endosome transport [TAS]
- regulation of protein stability [ISS]
- regulation of sequence-specific DNA binding transcription factor activity [TAS]
- regulation of stress-activated MAPK cascade [TAS]
- response to epidermal growth factor [IDA]
- response to stress [TAS]
- signal transduction [TAS]
- small GTPase mediated signal transduction [TAS]
- stress-activated MAPK cascade [TAS]
- synaptic transmission [TAS]
- toll-like receptor 10 signaling pathway [TAS]
- toll-like receptor 2 signaling pathway [TAS]
- toll-like receptor 3 signaling pathway [TAS]
- toll-like receptor 4 signaling pathway [TAS]
- toll-like receptor 5 signaling pathway [TAS]
- toll-like receptor 9 signaling pathway [TAS]
- toll-like receptor TLR1:TLR2 signaling pathway [TAS]
- toll-like receptor TLR6:TLR2 signaling pathway [TAS]
- toll-like receptor signaling pathway [TAS]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Biochemical Activity (Phosphorylation)
An interaction is inferred from the biochemical effect of one protein upon another, for example, GTP-GDP exchange activity or phosphorylation of a substrate by a kinase. The bait protein executes the activity on the substrate hit protein. A Modification value is recorded for interactions of this type with the possible values Phosphorylation, Ubiquitination, Sumoylation, Dephosphorylation, Methylation, Prenylation, Acetylation, Deubiquitination, Proteolytic Processing, Glucosylation, Nedd(Rub1)ylation, Deacetylation, No Modification, Demethylation.
Publication
Ataxia telangiectasia mutated proteins, MAPKs, and RSK2 are involved in the phosphorylation of STAT3.
Phosphorylation at Ser(727) is known to be required for complete activation of STAT3 by diverse stimuli including UV irradiation, but the kinase(s) responsible for phosphorylating STAT3 (Ser(727)) is still not well discerned. In the present study, we observed that activation of ATM is required for a UVA-stimulated increase in Ser(727) phosphorylation of STAT3 as well as in activation and phosphorylation ... [more]
Throughput
- Low Throughput
Curated By
- BioGRID