SGS1
Gene Ontology Biological Process
- DNA double-strand break processing [IGI]
 - DNA duplex unwinding [IDA]
 - DNA topological change [IDA]
 - DNA unwinding involved in DNA replication [IDA]
 - cellular response to DNA damage stimulus [IMP]
 - chromosome organization [IMP]
 - double-strand break repair via homologous recombination [IGI, IMP]
 - gene conversion at mating-type locus, DNA double-strand break processing [IGI]
 - intra-S DNA damage checkpoint [IGI, IMP]
 - meiotic DNA double-strand break processing [IGI]
 - meiotic chromosome segregation [IMP]
 - mitotic sister chromatid segregation [IMP]
 - negative regulation of meiotic joint molecule formation [IGI]
 - regulation of reciprocal meiotic recombination [IGI]
 - replicative cell aging [IMP]
 - telomere maintenance [IGI]
 - telomere maintenance via recombination [IGI, IMP]
 - telomeric 3' overhang formation [IGI]
 
Gene Ontology Molecular Function
MUS81
Gene Ontology Biological Process
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Synthetic Lethality
A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.
Publication
Phosphorylation of the RecQ Helicase Sgs1/BLM Controls Its DNA Unwinding Activity during Meiosis and Mitosis.
The Bloom's helicase ortholog, Sgs1, orchestrates the formation and disengagement of recombination intermediates to enable controlled crossing-over during meiotic and mitotic DNA repair. Whether its enzymatic activity is temporally regulated to implement formation of noncrossovers prior to the activation of crossover-nucleases is unknown. Here, we show that, akin to the Mus81-Mms4, Yen1, and MutL?-Exo1 nucleases, Sgs1 helicase function is under ... [more]
Throughput
- Low Throughput
 
Ontology Terms
- vegetative growth (APO:0000106)
 - inviable (APO:0000112)
 
Additional Notes
- sgs1-9a allele
 
Related interactions
| Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes | 
|---|---|---|---|---|---|---|
| SGS1 MUS81 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.  | High | -16.312 | BioGRID | 213409  | |
| MUS81 SGS1 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.  | High | -0.6848 | BioGRID | 370250  | |
| SGS1 MUS81 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.  | High | -0.6848 | BioGRID | 405454  | |
| SGS1 MUS81 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.  | High | -0.5141 | BioGRID | 2164098  | |
| MUS81 SGS1 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.  | High | -0.6911 | BioGRID | 2100887  | |
| MUS81 SGS1 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.  | High | -0.5343 | BioGRID | 2604911  | |
| MUS81 SGS1 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.  | High | -0.8508 | BioGRID | 2429394  | |
| SGS1 MUS81 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.  | High | - | BioGRID | 2894195  | |
| SGS1 MUS81 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.  | Low | -0.3194 | BioGRID | 560542  | |
| SGS1 MUS81 | Phenotypic Enhancement Phenotypic Enhancement A genetic interaction is inferred when mutation or overexpression of one gene results in enhancement of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene.  | Low | - | BioGRID | 238842  | |
| SGS1 MUS81 | Phenotypic Enhancement Phenotypic Enhancement A genetic interaction is inferred when mutation or overexpression of one gene results in enhancement of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene.  | Low | - | BioGRID | 330873  | |
| SGS1 MUS81 | Phenotypic Enhancement Phenotypic Enhancement A genetic interaction is inferred when mutation or overexpression of one gene results in enhancement of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene.  | High | - | BioGRID | 2340547  | |
| SGS1 MUS81 | Synthetic Growth Defect Synthetic Growth Defect A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.  | Low | - | BioGRID | 238843  | |
| SGS1 MUS81 | Synthetic Growth Defect Synthetic Growth Defect A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.  | High | - | BioGRID | 454727  | |
| MUS81 SGS1 | Synthetic Lethality Synthetic Lethality A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.  | Low | - | BioGRID | 158336  | |
| MUS81 SGS1 | Synthetic Lethality Synthetic Lethality A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.  | High | - | BioGRID | 165274  | |
| SGS1 MUS81 | Synthetic Lethality Synthetic Lethality A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.  | Low | - | BioGRID | 2766914  | |
| MUS81 SGS1 | Synthetic Lethality Synthetic Lethality A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.  | Low | - | BioGRID | 158337  | |
| SGS1 MUS81 | Synthetic Lethality Synthetic Lethality A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.  | Low | - | BioGRID | 547170  | |
| SGS1 MUS81 | Synthetic Lethality Synthetic Lethality A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.  | Low | - | BioGRID | 158795  | |
| SGS1 MUS81 | Synthetic Lethality Synthetic Lethality A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.  | High | - | BioGRID | 166647  | |
| MUS81 SGS1 | Synthetic Lethality Synthetic Lethality A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.  | High | - | BioGRID | 456245  | |
| SGS1 MUS81 | Synthetic Lethality Synthetic Lethality A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.  | Low | - | BioGRID | 2599852  | |
| SGS1 MUS81 | Synthetic Lethality Synthetic Lethality A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.  | Low | - | BioGRID | 518448  | |
| MUS81 SGS1 | Synthetic Lethality Synthetic Lethality A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.  | Low | - | BioGRID | 1534993  | |
| SGS1 MUS81 | Synthetic Lethality Synthetic Lethality A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.  | High | - | BioGRID | 109194  | |
| MUS81 SGS1 | Synthetic Lethality Synthetic Lethality A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.  | High | - | BioGRID | 109195  | |
| SGS1 MUS81 | Synthetic Lethality Synthetic Lethality A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.  | High | - | BioGRID | 109196  | |
| MUS81 SGS1 | Synthetic Lethality Synthetic Lethality A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.  | High | - | BioGRID | 109197  | |
| SGS1 MUS81 | Synthetic Rescue Synthetic Rescue A genetic interaction is inferred when mutations or deletions of one gene rescues the lethality or growth defect of a strain mutated or deleted for another gene.  | Low | - | BioGRID | 855731  | 
Curated By
- BioGRID