BAIT
SIRT6
SIR2L6
sirtuin 6
GO Process (5)
GO Function (7)
GO Component (5)
Gene Ontology Biological Process
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Homo sapiens
PREY
DDX3X
CAP-Rf, DBX, DDX14, DDX3, HLP2
DEAD (Asp-Glu-Ala-Asp) box helicase 3, X-linked
GO Process (29)
GO Function (14)
GO Component (6)
Gene Ontology Biological Process
- ATP catabolic process [IDA, TAS]
- DNA duplex unwinding [IDA]
- RNA secondary structure unwinding [IDA]
- cellular response to arsenic-containing substance [IDA]
- cellular response to osmotic stress [IDA]
- chromosome segregation [IMP]
- extrinsic apoptotic signaling pathway via death domain receptors [IMP]
- innate immune response [IMP]
- intracellular signal transduction [IDA]
- intrinsic apoptotic signaling pathway [IMP]
- mature ribosome assembly [IMP]
- negative regulation of apoptotic process [IMP]
- negative regulation of cell growth [IDA]
- negative regulation of cysteine-type endopeptidase activity involved in apoptotic process [IMP]
- negative regulation of intrinsic apoptotic signaling pathway [IMP]
- negative regulation of protein complex assembly [IDA]
- negative regulation of translation [IMP]
- positive regulation of G1/S transition of mitotic cell cycle [IMP]
- positive regulation of apoptotic process [IMP]
- positive regulation of cell growth [IMP]
- positive regulation of chemokine (C-C motif) ligand 5 production [TAS]
- positive regulation of cysteine-type endopeptidase activity involved in apoptotic process [IMP]
- positive regulation of interferon-beta production [TAS]
- positive regulation of transcription from RNA polymerase II promoter [IDA, IMP]
- positive regulation of translation [IDA]
- positive regulation of translational initiation [IMP]
- positive regulation of viral genome replication [IMP]
- response to virus [IDA]
- stress granule assembly [IDA]
Gene Ontology Molecular Function- ATP-dependent DNA helicase activity [IDA]
- ATP-dependent RNA helicase activity [IDA]
- ATPase activity [IDA]
- DNA binding [IDA]
- RNA binding [IDA]
- RNA stem-loop binding [IDA]
- eukaryotic initiation factor 4E binding [IDA]
- mRNA 5'-UTR binding [IDA]
- poly(A) RNA binding [IDA]
- poly(A) binding [IDA]
- protein binding [IPI]
- ribosomal small subunit binding [IDA]
- transcription factor binding [IDA]
- translation initiation factor binding [IDA]
- ATP-dependent DNA helicase activity [IDA]
- ATP-dependent RNA helicase activity [IDA]
- ATPase activity [IDA]
- DNA binding [IDA]
- RNA binding [IDA]
- RNA stem-loop binding [IDA]
- eukaryotic initiation factor 4E binding [IDA]
- mRNA 5'-UTR binding [IDA]
- poly(A) RNA binding [IDA]
- poly(A) binding [IDA]
- protein binding [IPI]
- ribosomal small subunit binding [IDA]
- transcription factor binding [IDA]
- translation initiation factor binding [IDA]
Gene Ontology Cellular Component
Homo sapiens
Affinity Capture-MS
An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods.
Publication
Reciprocal interaction between SIRT6 and APC/C regulates genomic stability.
SIRT6 is an NAD+-dependent deacetylase that plays an important role in mitosis fidelity and genome stability. In the present study, we found that SIRT6 overexpression leads to mitosis defects and aneuploidy. We identified SIRT6 as a novel substrate of anaphase-promoting complex/cyclosome (APC/C), which is a master regulator of mitosis. Both CDH1 and CDC20, co-activators of APC/C, mediated SIRT6 degradation via ... [more]
Sci Rep Dec. 09, 2020; 11(1);14253 [Pubmed: 34244565]
Throughput
- Low Throughput
Curated By
- BioGRID