HIF1A
Gene Ontology Biological Process
- Notch signaling pathway [TAS]
- axon transport of mitochondrion [IMP]
- cellular response to hypoxia [IDA, IEP, TAS]
- cellular response to interleukin-1 [IEP]
- collagen metabolic process [ISS]
- connective tissue replacement involved in inflammatory response wound healing [ISS]
- elastin metabolic process [ISS]
- epithelial to mesenchymal transition [ISS]
- mRNA transcription from RNA polymerase II promoter [IC]
- negative regulation of oxidative stress-induced neuron intrinsic apoptotic signaling pathway [IDA]
- oxygen homeostasis [IDA]
- positive regulation of angiogenesis [IC]
- positive regulation of chemokine production [TAS]
- positive regulation of chemokine-mediated signaling pathway [IC]
- positive regulation of endothelial cell proliferation [IC]
- positive regulation of epithelial cell migration [ISS]
- positive regulation of erythrocyte differentiation [IC]
- positive regulation of glycolytic process [IC]
- positive regulation of hormone biosynthetic process [IDA]
- positive regulation of nitric-oxide synthase activity [TAS]
- positive regulation of receptor biosynthetic process [IMP]
- positive regulation of transcription from RNA polymerase II promoter [IDA, IGI]
- positive regulation of transcription from RNA polymerase II promoter in response to hypoxia [IDA, IMP]
- positive regulation of transcription, DNA-templated [IDA, IMP]
- positive regulation of vascular endothelial growth factor receptor signaling pathway [IC]
- positive regulation vascular endothelial growth factor production [IDA, IMP]
- regulation of gene expression [IDA]
- regulation of transcription from RNA polymerase II promoter in response to hypoxia [TAS]
- regulation of transcription from RNA polymerase II promoter in response to oxidative stress [IDA]
- regulation of transcription, DNA-templated [IDA]
- regulation of transforming growth factor beta2 production [IMP]
- response to hypoxia [IDA, IMP]
- signal transduction [IMP]
- vascular endothelial growth factor production [IDA]
Gene Ontology Molecular Function- Hsp90 protein binding [IDA]
- RNA polymerase II distal enhancer sequence-specific DNA binding transcription factor activity [IDA]
- enzyme binding [IPI]
- histone acetyltransferase binding [IPI]
- nuclear hormone receptor binding [IPI]
- protein binding [IPI]
- protein heterodimerization activity [IPI, TAS]
- protein kinase binding [IPI]
- sequence-specific DNA binding [IDA]
- sequence-specific DNA binding transcription factor activity [IDA, TAS]
- transcription factor binding [IPI]
- transcription factor binding transcription factor activity [IDA]
- ubiquitin protein ligase binding [IPI]
- Hsp90 protein binding [IDA]
- RNA polymerase II distal enhancer sequence-specific DNA binding transcription factor activity [IDA]
- enzyme binding [IPI]
- histone acetyltransferase binding [IPI]
- nuclear hormone receptor binding [IPI]
- protein binding [IPI]
- protein heterodimerization activity [IPI, TAS]
- protein kinase binding [IPI]
- sequence-specific DNA binding [IDA]
- sequence-specific DNA binding transcription factor activity [IDA, TAS]
- transcription factor binding [IPI]
- transcription factor binding transcription factor activity [IDA]
- ubiquitin protein ligase binding [IPI]
Gene Ontology Cellular Component
VHL
Gene Ontology Biological Process
- NLS-bearing protein import into nucleus [ISO]
- angiogenesis [ISO]
- blood vessel endothelial cell migration [ISO]
- extracellular matrix organization [ISO]
- negative regulation of thymocyte apoptotic process [ISO]
- negative regulation of transcription from RNA polymerase II promoter [IMP]
- negative regulation of transcription from RNA polymerase II promoter in response to hypoxia [ISO]
- neuron differentiation [IDA]
- positive regulation of transcription, DNA-templated [ISO]
- proteasomal protein catabolic process [ISO]
- protein catabolic process [ISO]
- protein heterooligomerization [IPI]
- protein transport [ISO]
- protein ubiquitination [ISO]
- regulation of apoptotic signaling pathway [ISO]
- regulation of catecholamine metabolic process [IMP]
- regulation of thymocyte apoptotic process [ISO]
- regulation of transcription, DNA-templated [IDA, ISO]
- response to ethanol [IEP]
- response to hypoxia [IMP]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Reconstituted Complex
An interaction is inferred between proteins in vitro. This can include proteins in recombinant form or proteins isolated directly from cells with recombinant or purified bait. For example, GST pull-down assays where a GST-tagged protein is first isolated and then used to fish interactors from cell lysates are considered reconstituted complexes (e.g. PUBMED: 14657240, Fig. 4A or PUBMED: 14761940, Fig. 5). This can also include gel-shifts, surface plasmon resonance, isothermal titration calorimetry (ITC) and bio-layer interferometry (BLI) experiments. The bait-hit directionality may not be clear for 2 interacting proteins. In these cases the directionality is up to the discretion of the curator.
Publication
Hypoxia-inducible factor-1alpha stabilization in nonhypoxic conditions: role of oxidation and intracellular ascorbate depletion.
Hypoxia-inducible factor-1 (HIF-1) is a decisive element for the transcriptional regulation of many genes induced under low oxygen conditions. Under normal oxygen conditions, HIF-1alpha, the active subunit of HIF-1, is hydroxylated on proline residues by specific HIF prolyl-hydroxylases, leading to ubiquitination and degradation by the proteasome. In hypoxia, hydroxylation and ubiquitination are blocked and HIF-1alpha accumulates in cells. Recent studies ... [more]
Throughput
- Low Throughput
Additional Notes
- Hif1a not confirmed human
Curated By
- BioGRID