BAIT

TRA1

histone acetyltransferase TRA1, L000003945, YHR099W
Subunit of SAGA and NuA4 histone acetyltransferase complexes; interacts with acidic activators (e.g., Gal4p) which leads to transcription activation; similar to human TRRAP, which is a cofactor for c-Myc mediated oncogenic transformation
GO Process (3)
GO Function (1)
GO Component (5)
Saccharomyces cerevisiae (S288c)
PREY

HCR1

S000007439, YLR192C
eIF3j component of translation initiation factor 3 (eIF3); dual function protein involved in translation initiation as a substoichiometric component (eIF3j) of eIF3; required for processing of 20S pre-rRNA; required at post-transcriptional step for efficient retrotransposition; absence results in decreased Ty1 Gag:GFP protein levels; binds to eIF3 subunits Rpg1p and Prt1p and 18S rRNA
GO Process (2)
GO Function (1)
GO Component (1)
Saccharomyces cerevisiae (S288c)

Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Publication

Systematic genetic array analysis links the Saccharomyces cerevisiae SAGA/SLIK and NuA4 component Tra1 to multiple cellular processes.

Hoke SM, Guzzo J, Andrews B, Brandl CJ

BACKGROUND: Tra1 is an essential 437-kDa component of the Saccharomyces cerevisiae SAGA/SLIK and NuA4 histone acetyltransferase complexes. It is a member of a group of key signaling molecules that share a carboxyl-terminal domain related to phosphatidylinositol-3-kinase but unlike many family members, it lacks kinase activity. To identify genetic interactions for TRA1 and provide insight into its function we have performed ... [more]

BMC Genet. Jul. 12, 2008; 9(0);46 [Pubmed: 18616809]

Throughput

  • Low Throughput

Ontology Terms

  • phenotype: vegetative growth (APO:0000106)
  • phenotype: colony size (APO:0000063)

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
TRA1 HCR1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.1806BioGRID
2127858

Curated By

  • BioGRID