RPS16
Gene Ontology Biological Process
- RNA metabolic process [TAS]
- SRP-dependent cotranslational protein targeting to membrane [TAS]
- cellular protein metabolic process [TAS]
- gene expression [TAS]
- mRNA metabolic process [TAS]
- nuclear-transcribed mRNA catabolic process, nonsense-mediated decay [TAS]
- rRNA processing [IMP]
- ribosomal small subunit biogenesis [IMP]
- translation [IC, NAS, TAS]
- translational elongation [TAS]
- translational initiation [TAS]
- translational termination [TAS]
- viral life cycle [TAS]
- viral process [TAS]
- viral transcription [TAS]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
RPSA
Gene Ontology Biological Process
- RNA metabolic process [TAS]
- SRP-dependent cotranslational protein targeting to membrane [TAS]
- cellular protein metabolic process [TAS]
- endonucleolytic cleavage in ITS1 to separate SSU-rRNA from 5.8S rRNA and LSU-rRNA from tricistronic rRNA transcript (SSU-rRNA, 5.8S rRNA, LSU-rRNA) [IBA]
- endonucleolytic cleavage to generate mature 3'-end of SSU-rRNA from (SSU-rRNA, 5.8S rRNA, LSU-rRNA) [IBA]
- gene expression [TAS]
- mRNA metabolic process [TAS]
- nuclear-transcribed mRNA catabolic process, nonsense-mediated decay [TAS]
- rRNA export from nucleus [IBA]
- ribosomal small subunit assembly [IBA]
- translation [IBA, IC, TAS]
- translational elongation [TAS]
- translational initiation [TAS]
- translational termination [TAS]
- viral life cycle [TAS]
- viral process [TAS]
- viral transcription [TAS]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Affinity Capture-MS
An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods.
Publication
OpenCell: Endogenous tagging for the cartography of human cellular organization.
Elucidating the wiring diagram of the human cell is a central goal of the postgenomic era. We combined genome engineering, confocal live-cell imaging, mass spectrometry, and data science to systematically map the localization and interactions of human proteins. Our approach provides a data-driven description of the molecular and spatial networks that organize the proteome. Unsupervised clustering of these networks delineates ... [more]
Throughput
- High Throughput
Additional Notes
- Bait generated from library of CRISPR-edited human embryonic kidney (HEK) 293T cell lines harboring fluorescent tags on individual proteins
Related interactions
Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
---|---|---|---|---|---|---|
RPS16 RPSA | Affinity Capture-MS Affinity Capture-MS An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods. | High | 0.979 | BioGRID | 3150352 | |
RPS16 RPSA | Co-fractionation Co-fractionation Interaction inferred from the presence of two or more protein subunits in a partially purified protein preparation. If co-fractionation is demonstrated between 3 or more proteins, then add them as a complex. | High | 1 | BioGRID | 742602 | |
RPS16 RPSA | Co-fractionation Co-fractionation Interaction inferred from the presence of two or more protein subunits in a partially purified protein preparation. If co-fractionation is demonstrated between 3 or more proteins, then add them as a complex. | High | - | BioGRID | 922491 | |
RPS16 RPSA | Co-fractionation Co-fractionation Interaction inferred from the presence of two or more protein subunits in a partially purified protein preparation. If co-fractionation is demonstrated between 3 or more proteins, then add them as a complex. | High | 0.996 | BioGRID | 1271484 |
Curated By
- BioGRID