BAIT
RUVBL2
ECP51, INO80J, REPTIN, RVB2, TIH2, TIP48, TIP49B, CGI-46
RuvB-like AAA ATPase 2
GO Process (14)
GO Function (9)
GO Component (10)
Gene Ontology Biological Process
- ATP catabolic process [IDA]
- DNA duplex unwinding [IDA, TAS]
- cellular response to UV [IMP]
- cellular response to estradiol stimulus [IMP]
- chromatin organization [TAS]
- chromatin remodeling [IMP]
- establishment of protein localization to chromatin [IMP]
- histone H2A acetylation [IDA]
- histone H4 acetylation [IDA]
- negative regulation of estrogen receptor binding [IMP]
- positive regulation of histone acetylation [IMP]
- positive regulation of transcription from RNA polymerase II promoter [IMP]
- protein folding [TAS]
- transcriptional activation by promoter-enhancer looping [IMP]
Gene Ontology Molecular Function- ATP-dependent DNA helicase activity [TAS]
- ATPase activity [IDA]
- DNA helicase activity [IDA]
- RNA polymerase II core promoter sequence-specific DNA binding [IDA]
- RNA polymerase II distal enhancer sequence-specific DNA binding [IDA]
- chromatin DNA binding [IDA]
- identical protein binding [IDA, IPI]
- protein binding [IPI]
- unfolded protein binding [TAS]
- ATP-dependent DNA helicase activity [TAS]
- ATPase activity [IDA]
- DNA helicase activity [IDA]
- RNA polymerase II core promoter sequence-specific DNA binding [IDA]
- RNA polymerase II distal enhancer sequence-specific DNA binding [IDA]
- chromatin DNA binding [IDA]
- identical protein binding [IDA, IPI]
- protein binding [IPI]
- unfolded protein binding [TAS]
Gene Ontology Cellular Component
Homo sapiens
PREY
CACYBP
GIG5, S100A6BP, SIP, PNAS-107
calcyclin binding protein
GO Process (0)
GO Function (2)
GO Component (4)
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Homo sapiens
Affinity Capture-MS
An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods.
Publication
OpenCell: Endogenous tagging for the cartography of human cellular organization.
Elucidating the wiring diagram of the human cell is a central goal of the postgenomic era. We combined genome engineering, confocal live-cell imaging, mass spectrometry, and data science to systematically map the localization and interactions of human proteins. Our approach provides a data-driven description of the molecular and spatial networks that organize the proteome. Unsupervised clustering of these networks delineates ... [more]
Science Dec. 11, 2021; 375(6585);eabi6983 [Pubmed: 35271311]
Throughput
- High Throughput
Additional Notes
- Bait generated from library of CRISPR-edited human embryonic kidney (HEK) 293T cell lines harboring fluorescent tags on individual proteins
Curated By
- BioGRID