DIA2
Gene Ontology Biological Process
- SCF-dependent proteasomal ubiquitin-dependent protein catabolic process [IDA, IMP]
- chromatin silencing at silent mating-type cassette [IMP]
- chromatin silencing at telomere [IMP]
- invasive growth in response to glucose limitation [IGI]
- protein ubiquitination [IMP]
- protein ubiquitination involved in ubiquitin-dependent protein catabolic process [IMP]
- regulation of DNA replication [IMP]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
MSH2
Gene Ontology Biological Process
- DNA recombination [IMP]
- chromatin silencing at silent mating-type cassette [IGI]
- interstrand cross-link repair [IGI]
- maintenance of DNA repeat elements [IBA]
- meiotic gene conversion [IMP]
- meiotic mismatch repair [IMP]
- mismatch repair [IMP]
- mitotic recombination [IMP]
- negative regulation of reciprocal meiotic recombination [IBA]
- postreplication repair [IBA]
- removal of nonhomologous ends [IGI, IMP]
Gene Ontology Molecular Function- ATP binding [IDA]
- ATPase activity [IDA]
- DNA insertion or deletion binding [IDA]
- DNA-dependent ATPase activity [IBA]
- Y-form DNA binding [IDA]
- damaged DNA binding [IBA]
- double-strand/single-strand DNA junction binding [IDA]
- four-way junction DNA binding [IDA]
- guanine/thymine mispair binding [IDA]
- heteroduplex DNA loop binding [IDA]
- single base insertion or deletion binding [IDA, IMP]
- ATP binding [IDA]
- ATPase activity [IDA]
- DNA insertion or deletion binding [IDA]
- DNA-dependent ATPase activity [IBA]
- Y-form DNA binding [IDA]
- damaged DNA binding [IBA]
- double-strand/single-strand DNA junction binding [IDA]
- four-way junction DNA binding [IDA]
- guanine/thymine mispair binding [IDA]
- heteroduplex DNA loop binding [IDA]
- single base insertion or deletion binding [IDA, IMP]
Gene Ontology Cellular Component
Synthetic Growth Defect
A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.
Publication
Significant conservation of synthetic lethal genetic interaction networks between distantly related eukaryotes.
Synthetic lethal genetic interaction networks define genes that work together to control essential functions and have been studied extensively in Saccharomyces cerevisiae using the synthetic genetic array (SGA) analysis technique (ScSGA). The extent to which synthetic lethal or other genetic interaction networks are conserved between species remains uncertain. To address this question, we compared literature-curated and experimentally derived genetic interaction ... [more]
Throughput
- High Throughput
Ontology Terms
- phenotype: vegetative growth (APO:0000106)
Additional Notes
- EMAP
Related interactions
Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
---|---|---|---|---|---|---|
MSH2 DIA2 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -0.1475 | BioGRID | 413027 | |
DIA2 MSH2 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -0.1475 | BioGRID | 415421 |
Curated By
- BioGRID