BAIT

SEC14

PIT1, phosphatidylinositol/phosphatidylcholine transfer protein SEC14, L000001839, YMR079W
Phosphatidylinositol/phosphatidylcholine transfer protein; involved in regulating PtdIns, PtdCho, and ceramide metabolism, products of which regulate intracellular transport and UPR; has a role in localization of lipid raft proteins; functionally homologous to mammalian PITPs; SEC14 has a paralog, YKL091C, that arose from the whole genome duplication
Saccharomyces cerevisiae (S288c)
PREY

SPO14

PLD1, phospholipase D, L000002005, L000002946, YKR031C
Phospholipase D; catalyzes the hydrolysis of phosphatidylcholine, producing choline and phosphatidic acid; involved in Sec14p-independent secretion; required for meiosis and spore formation; differently regulated in secretion and meiosis; participates in transcription initiation and/or early elongation of specific genes; interacts with "foot domain" of RNA polymerase II; deletion results in abnormal CTD-Ser5 phosphorylation of RNA polymerase II at specific promoter regions
Saccharomyces cerevisiae (S288c)

Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Publication

Phospholipid transfer protein Sec14 is required for trafficking from endosomes and regulates distinct trans-Golgi export pathways.

Curwin AJ, Fairn GD, McMaster CR

A protein known to regulate both lipid metabolism and vesicular transport is the phosphatidylcholine/phosphatidylinositol transfer protein Sec14 of Saccharomyces cerevisiae. Sec14 is thought to globally affect secretion from the trans-Golgi. The results from a synthetic genetic array screen for genes whose inactivation impaired growth of cells with a temperature-sensitive SEC14 allele implied Sec14 regulates transport into and out of the ... [more]

J. Biol. Chem. Mar. 13, 2009; 284(11);7364-75 [Pubmed: 19129178]

Throughput

  • High Throughput

Ontology Terms

  • phenotype: heat sensitivity (APO:0000147)
  • phenotype: vegetative growth (APO:0000106)

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
SEC14 SPO14
Phenotypic Suppression
Phenotypic Suppression

A genetic interaction is inferred when mutation or over expression of one gene results in suppression of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene.

Low-BioGRID
534861
SEC14 SPO14
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Low-BioGRID
329425
SEC14 SPO14
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Low-BioGRID
160684
SEC14 SPO14
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Low-BioGRID
448917
SPO14 SEC14
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Low-BioGRID
160620
SEC14 SPO14
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

High-BioGRID
258407
SPO14 SEC14
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Low-BioGRID
163327
SEC14 SPO14
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Low-BioGRID
344123

Curated By

  • BioGRID