SFP1
Gene Ontology Biological Process
SCH9
Gene Ontology Biological Process
- age-dependent response to oxidative stress involved in chronological cell aging [IMP]
- positive regulation of ribosomal protein gene transcription from RNA polymerase II promoter [IMP]
- positive regulation of transcription from RNA polymerase I promoter [IGI, IMP]
- positive regulation of transcription from RNA polymerase III promoter [IGI, IMP]
- protein phosphorylation [IMP]
- regulation of cell size [IMP]
- regulation of protein localization [IMP]
- regulation of response to osmotic stress [IMP]
- regulation of sphingolipid biosynthetic process [IMP]
- regulation of transcription from RNA polymerase II promoter in response to oxidative stress [IMP]
- replicative cell aging [IMP]
Gene Ontology Molecular Function
Synthetic Growth Defect
A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.
Publication
Sfp1 interaction with TORC1 and Mrs6 reveals feedback regulation on TOR signaling.
Ribosome biogenesis drives cell growth, and the large transcriptional output underlying this process is tightly regulated. The Target of Rapamycin (TOR) kinase is part of a highly conserved signaling pathway linking nutritional and stress signals to regulation of ribosomal protein (RP) and ribosome biogenesis (Ribi) gene transcription. In Saccharomyces cerevisiae, one of the downstream effectors of TOR is Sfp1, a ... [more]
Throughput
- Low Throughput
Ontology Terms
- phenotype: viability (APO:0000111)
- phenotype: vegetative growth (APO:0000106)
Related interactions
Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
---|---|---|---|---|---|---|
SCH9 SFP1 | Synthetic Growth Defect Synthetic Growth Defect A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell. | High | - | BioGRID | 2335423 | |
SFP1 SCH9 | Synthetic Lethality Synthetic Lethality A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition. | Low | - | BioGRID | 591760 |
Curated By
- BioGRID