BAIT

CAR2

ornithine-oxo-acid transaminase, cargB, L000000217, YLR438W
L-ornithine transaminase (OTAse); catalyzes the second step of arginine degradation, expression is dually-regulated by allophanate induction and a specific arginine induction process; not nitrogen catabolite repression sensitive; protein abundance increases in response to DNA replication stress
GO Process (2)
GO Function (1)
GO Component (3)

Gene Ontology Molecular Function

Gene Ontology Cellular Component

Saccharomyces cerevisiae (S288c)
PREY

PRO1

glutamate 5-kinase, L000001491, YDR300C
Gamma-glutamyl kinase; catalyzes the first step in proline biosynthesis; PRO1 has a paralog, YHR033W, that arose from the whole genome duplication
GO Process (1)
GO Function (1)
GO Component (1)

Gene Ontology Biological Process

Gene Ontology Molecular Function

Gene Ontology Cellular Component

Saccharomyces cerevisiae (S288c)

Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Publication

Multiple knockout analysis of genetic robustness in the yeast metabolic network.

Deutscher D, Meilijson I, Kupiec M, Ruppin E

Genetic robustness characterizes the constancy of the phenotype in face of heritable perturbations. Previous investigations have used comprehensive single and double gene knockouts to study gene essentiality and pairwise gene interactions in the yeast Saccharomyces cerevisiae. Here we conduct an in silico multiple knockout investigation of a flux balance analysis model of the yeast's metabolic network. Cataloging gene sets that ... [more]

Nat. Genet. Sep. 01, 2006; 38(9);993-8 [Pubmed: 16941010]

Throughput

  • High Throughput

Ontology Terms

  • phenotype: inviable (APO:0000112)

Additional Notes

  • CAR2/GAP1/PRO1/PUT4 quadruple mutant is synthetic lethal in synthetic rich media
  • double mutants are synthetic lethal in minimal media
  • genetic complex

Curated By

  • BioGRID