BAIT
PHO85
LDB15, cyclin-dependent serine/threonine-protein kinase PHO85, phoU, L000001431, YPL031C
Cyclin-dependent kinase; has ten cyclin partners; involved in regulating the cellular response to nutrient levels and environmental conditions and progression through the cell cycle
GO Process (14)
GO Function (2)
GO Component (2)
Gene Ontology Biological Process
- cellular response to DNA damage stimulus [IGI, IMP]
- fungal-type cell wall organization [IGI]
- negative regulation of calcium-mediated signaling [IGI]
- negative regulation of glycogen biosynthetic process [IMP]
- negative regulation of macroautophagy [IMP]
- negative regulation of phosphate metabolic process [IGI]
- negative regulation of sequence-specific DNA binding transcription factor activity [IGI, IMP]
- negative regulation of transcription from RNA polymerase II promoter [IGI]
- positive regulation of macroautophagy [IMP]
- protein phosphorylation [IDA]
- regulation of establishment or maintenance of cell polarity [IGI]
- regulation of protein localization [IDA]
- regulation of protein stability [IGI, IMP]
- regulation of transcription involved in G1/S transition of mitotic cell cycle [IGI, IMP]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Saccharomyces cerevisiae (S288c)
PREY
PHM8
YER037W
Lysophosphatidic acid (LPA) phosphatase, nucleotidase; principle and physiological nucleotidase working on GMP, UMP and CMP; involved in LPA hydrolysis in response to phosphate starvation and ribose salvage pathway; phosphatase activity is soluble and Mg2+ dependent; expression is induced by low phosphate levels and by inactivation of Pho85p; PHM8 has a paralog, SDT1, that arose from the whole genome duplication
GO Process (3)
GO Function (2)
GO Component (2)
Gene Ontology Biological Process
Gene Ontology Molecular Function
Saccharomyces cerevisiae (S288c)
Dosage Lethality
A genetic interaction is inferred when over expression or increased dosage of one gene causes lethality in a strain that is mutated or deleted for another gene.
Publication
Mapping pathways and phenotypes by systematic gene overexpression.
Many disease states result from gene overexpression, often in a specific genetic context. To explore gene overexpression phenotypes systematically, we assembled an array of 5280 yeast strains, each containing an inducible copy of an S. cerevisiae gene, covering >80% of the genome. Approximately 15% of the overexpressed genes (769) reduced growth rate. This gene set was enriched for cell cycle-regulated ... [more]
Mol. Cell Feb. 03, 2006; 21(3);319-30 [Pubmed: 16455487]
Throughput
- High Throughput
Ontology Terms
- phenotype: inviable (APO:0000112)
Additional Notes
- Overexpression is lethal in a PHO85 deletion background
Curated By
- BioGRID