BAIT

LTE1

MSI2, mitotic regulator LTE1, L000000955, YAL024C
Protein similar to GDP/GTP exchange factors; without detectable GEF activity; required for asymmetric localization of Bfa1p at daughter-directed spindle pole bodies and for mitotic exit at low temperatures
GO Process (3)
GO Function (1)
GO Component (1)

Gene Ontology Molecular Function

Gene Ontology Cellular Component

Saccharomyces cerevisiae (S288c)
PREY

DBF2

serine/threonine-protein kinase DBF2, L000000487, YGR092W
Ser/Thr kinase involved in transcription and stress response; functions as part of a network of genes in exit from mitosis; localization is cell cycle regulated; activated by Cdc15p during the exit from mitosis; also plays a role in regulating the stability of SWI5 and CLB2 mRNAs; phosphorylates Chs2p to regulate primary septum formation and Hof1p to regulate cytokinesis; DBF2 has a paralog, DBF20, that arose from the whole genome duplication
Saccharomyces cerevisiae (S288c)

Dosage Rescue

A genetic interaction is inferred when over expression or increased dosage of one gene rescues the lethality or growth defect of a strain that is mutated or deleted for another gene.

Publication

Lte1 contributes to Bfa1 localization rather than stimulating nucleotide exchange by Tem1.

Geymonat M, Spanos A, de Bettignies G, Sedgwick SG

Lte1 is a mitotic regulator long envisaged as a guanosine nucleotide exchange factor (GEF) for Tem1, the small guanosine triphosphatase governing activity of the Saccharomyces cerevisiae mitotic exit network. We demonstrate that this model requires reevaluation. No GEF activity was detectable in vitro, and mutational analysis of Lte1's putative GEF domain indicated that Lte1 activity relies on interaction with Ras ... [more]

J. Cell Biol. Nov. 16, 2009; 187(4);497-511 [Pubmed: 19948498]

Throughput

  • Low Throughput

Ontology Terms

  • viability (APO:0000111)

Additional Notes

  • Overexpression of DBF2 rescues growth in an LTE1/BFA1 mutant
  • genetic complex

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
LTE1 DBF2
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.2624BioGRID
2075933
DBF2 LTE1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.4894BioGRID
1984860

Curated By

  • BioGRID