BAIT

MPH1

YIR002C
3'-5' DNA helicase involved in error-free bypass of DNA lesions; binds flap DNA in error-free bypass pathway, stimulates activity of Rad27p and Dna2p; prevents crossovers between ectopic sequences by removing substrates for Mus81-Mms4 or Rad1-Rad10 cleavage; similar to FANCM human Fanconi anemia complementation group protein that with MHF complex is involved in stabilizing and remodeling blocked replication forks; member of SF2 DExD/H superfamily of helicases
GO Process (4)
GO Function (2)
GO Component (1)
Saccharomyces cerevisiae (S288c)
PREY

MUS81

SLX3, L000004650, YDR386W
Subunit of structure-specific Mms4p-Mus81p endonuclease; cleaves branched DNA; involved in DNA repair, replication fork stability, and joint molecule formation/resolution during meiotic recombination; promotes template switching during break-induced replication (BIR), causing non-reciprocal translocations (NRTs); helix-hairpin-helix protein; phosphorylation of non-catalytic subunit Mms4p by Cdc28p and Cdcp during mitotic cell cycle activates function of Mms4p-Mus81p
Saccharomyces cerevisiae (S288c)

Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Publication

Genetic evidence for a role of Saccharomyces cerevisiae Mph1 in recombinational DNA repair under replicative stress.

Panico ER, Ede C, Schildmann M, Schuerer KA, Kramer W

In yeast as in human, DNA helicases play critical roles in assisting replication fork progression. The Saccharomyces cerevisiae MPH1 gene, homologue of human FANCM, has been involved in homologous recombination and DNA repair. We describe a synthetic growth defect of an mph1 deletion if combined with an srs2 deletion that can result-depending on the genetic background-in synthetic lethality. The lethality ... [more]

Yeast Jan. 01, 2010; 27(1);11-27 [Pubmed: 19918932]

Throughput

  • Low Throughput

Ontology Terms

  • phenotype: vegetative growth (APO:0000106)

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
MUS81 MPH1
Dosage Lethality
Dosage Lethality

A genetic interaction is inferred when over expression or increased dosage of one gene causes lethality in a strain that is mutated or deleted for another gene.

Low-BioGRID
1537666
MPH1 MUS81
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.3519BioGRID
2604885
MUS81 MPH1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

Low-0.204BioGRID
560527
MPH1 MUS81
Phenotypic Suppression
Phenotypic Suppression

A genetic interaction is inferred when mutation or over expression of one gene results in suppression of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene.

Low-BioGRID
1537670
MPH1 MUS81
Positive Genetic
Positive Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a less severe fitness defect than expected under a given condition. This term is reserved for high or low throughput studies with scores.

High0.1202BioGRID
2605164
MUS81 MPH1
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Low-BioGRID
955738
MPH1 MUS81
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Low-BioGRID
904899

Curated By

  • BioGRID