BAIT

MPH1

YIR002C
3'-5' DNA helicase involved in error-free bypass of DNA lesions; binds flap DNA in error-free bypass pathway, stimulates activity of Rad27p and Dna2p; prevents crossovers between ectopic sequences by removing substrates for Mus81-Mms4 or Rad1-Rad10 cleavage; similar to FANCM human Fanconi anemia complementation group protein that with MHF complex is involved in stabilizing and remodeling blocked replication forks; member of SF2 DExD/H superfamily of helicases
GO Process (4)
GO Function (2)
GO Component (1)
Saccharomyces cerevisiae (S288c)
PREY

MUS81

SLX3, L000004650, YDR386W
Subunit of structure-specific Mms4p-Mus81p endonuclease; cleaves branched DNA; involved in DNA repair, replication fork stability, and joint molecule formation/resolution during meiotic recombination; promotes template switching during break-induced replication (BIR), causing non-reciprocal translocations (NRTs); helix-hairpin-helix protein; phosphorylation of non-catalytic subunit Mms4p by Cdc28p and Cdcp during mitotic cell cycle activates function of Mms4p-Mus81p
Saccharomyces cerevisiae (S288c)

Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Publication

Mph1 and mus81-mms4 prevent aberrant processing of mitotic recombination intermediates.

Mazon G, Symington LS

Homology-dependent repair of double-strand breaks (DSBs) from nonsister templates has the potential to generate loss of heterozygosity or genome rearrangements. Here we show that the Saccharomyces cerevisiae Mph1 helicase prevents crossovers between ectopic sequences by removing substrates for Mus81-Mms4 or Rad1-Rad10 cleavage. A role for Yen1 is only apparent in the absence of Mus81. Cells lacking Mph1 and the three ... [more]

Mol. Cell Oct. 10, 2013; 52(1);63-74 [Pubmed: 24119400]

Throughput

  • Low Throughput

Ontology Terms

  • chemical: methyl methanesulfonate (CHEBI:25255)
  • phenotype: ionizing radiation resistance (APO:0000194)
  • phenotype: resistance to chemicals (APO:0000087)
  • phenotype: chromosome/plasmid maintenance (APO:0000143)
  • phenotype: vegetative growth (APO:0000106)

Additional Notes

  • double mutants show an increase in the in the accumulation of intersister JMs
  • double mutants show decreased plating efficiency
  • double mutants show increased sensitivity to ionizing rations and MMS

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
MUS81 MPH1
Dosage Lethality
Dosage Lethality

A genetic interaction is inferred when over expression or increased dosage of one gene causes lethality in a strain that is mutated or deleted for another gene.

Low-BioGRID
1537666
MPH1 MUS81
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.3519BioGRID
2604885
MUS81 MPH1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

Low-0.204BioGRID
560527
MPH1 MUS81
Phenotypic Suppression
Phenotypic Suppression

A genetic interaction is inferred when mutation or over expression of one gene results in suppression of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene.

Low-BioGRID
1537670
MPH1 MUS81
Positive Genetic
Positive Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a less severe fitness defect than expected under a given condition. This term is reserved for high or low throughput studies with scores.

High0.1202BioGRID
2605164
MUS81 MPH1
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Low-BioGRID
955738
MPH1 MUS81
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Low-BioGRID
353265

Curated By

  • BioGRID