BAIT

BMH1

APR6, 14-3-3 family protein BMH1, L000000185, YER177W
14-3-3 protein, major isoform; controls proteome at post-transcriptional level, binds proteins and DNA, involved in regulation of exocytosis, vesicle transport, Ras/MAPK and rapamycin-sensitive signaling, aggresome formation, spindle position checkpoint; protein increases in abundance and relative distribution to the nucleus increases upon DNA replication stress; antiapoptotic gene similar to human 14-3-3; BMH1 has a paralog, BMH2, that arose from whole genome duplication
Saccharomyces cerevisiae (S288c)
PREY

IOC3

YFR013W
Subunit of the Isw1a complex; Isw1a has nucleosome-stimulated ATPase activity and represses transcription initiation by specific positioning of a promoter proximal dinucleosome; promotes nucleosome shifts in the 5 prime direction; IOC3 has a paralog, ESC8, that arose from the whole genome duplication
GO Process (1)
GO Function (3)
GO Component (1)

Gene Ontology Biological Process

Gene Ontology Molecular Function

Gene Ontology Cellular Component

Saccharomyces cerevisiae (S288c)

Affinity Capture-MS

An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods.

Publication

Identification of 14-3-3 proteins, Polo kinase, and RNA-binding protein Pes4 as key regulators of meiotic commitment in budding yeast.

Gavade JN, Puccia CM, Herod SG, Trinidad JC, Berchowitz LE, Lacefield S

The initiation of the cell division process of meiosis requires exogenous signals that activate internal gene regulatory networks. Meiotic commitment ensures the irreversible continuation of meiosis, even upon withdrawal of the meiosis-inducing signals. A loss of meiotic commitment can cause highly abnormal polyploid cells and can ultimately lead to germ cell tumors. Despite the importance of meiotic commitment, only a ... [more]

Curr Biol Dec. 11, 2021; 32(7);1534-1547.e9 [Pubmed: 35240051]

Throughput

  • High Throughput

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
IOC3 BMH1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-2.682BioGRID
224005

Curated By

  • BioGRID