BAIT

YMR1

phosphatidylinositol-3-phosphatase YMR1, YJR110W
Phosphatidylinositol 3-phosphate (PI3P) phosphatase; involved in various protein sorting pathways, including CVT targeting and endosome to vacuole transport; has similarity to the conserved myotubularin dual specificity phosphatase family
GO Process (1)
GO Function (2)
GO Component (1)

Gene Ontology Biological Process

Gene Ontology Cellular Component

Saccharomyces cerevisiae (S288c)
PREY

INP53

SJL3, SOP2, phosphatidylinositol-3-/phosphoinositide 5-phosphatase INP53, L000003984, YOR109W
Polyphosphatidylinositol phosphatase; dephosphorylates multiple phosphatidylinositol phosphates; involved in trans Golgi network-to-early endosome pathway; hyperosmotic stress causes translocation to actin patches; contains Sac1 and 5-ptase domains; INP53 has a paralog, INP52, that arose from the whole genome duplication
Saccharomyces cerevisiae (S288c)

Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Publication

Endosomal trafficking and DNA damage checkpoint kinases dictate survival to replication stress by regulating amino acid uptake and protein synthesis.

Ajazi A, Bruhn C, Shubassi G, Lucca C, Ferrari E, Cattaneo A, Bachi A, Manfrini N, Biffo S, Martini E, Minucci S, Vernieri C, Foiani M

Atg6Beclin 1 mediates autophagy and endosomal trafficking. We investigated how Atg6 influences replication stress. Combining genetic, genomic, metabolomic, and proteomic approaches, we found that the Vps34-Vps15-Atg6Beclin 1-Vps38UVRAG-phosphatydilinositol-3 phosphate (PtdIns(3)P) axis sensitizes cells to replication stress by favoring the degradation of plasma membrane amino acid (AA) transporters via endosomal trafficking and ESCRT proteins, while the PtdIns(3)P phosphatases Ymr1 and Inp53 promote ... [more]

Dev Cell Sep. 27, 2021; 56(18);2607-2622.e6 [Pubmed: 34534458]

Throughput

  • Low Throughput

Ontology Terms

  • phenotype: vegetative growth (APO:0000106)
  • phenotype: resistance to chemicals (APO:0000087)

Additional Notes

  • double mutants are hyper-sensitive to HU, NM, and MMS

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
INP53 YMR1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.3013BioGRID
2183987
INP53 YMR1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-6.7601BioGRID
324350
YMR1 INP53
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Low-BioGRID
502874

Curated By

  • BioGRID