TNK2
Gene Ontology Biological Process
- cell differentiation [IBA]
- cell migration [IBA]
- cell surface receptor signaling pathway [TAS]
- innate immune response [IBA]
- negative regulation of catalytic activity [TAS]
- peptidyl-tyrosine autophosphorylation [IBA]
- phosphorylation [IDA]
- positive regulation of peptidyl-tyrosine phosphorylation [IDA]
- regulation of cell proliferation [IBA]
- regulation of clathrin-mediated endocytosis [IDA]
- small GTPase mediated signal transduction [TAS]
- transmembrane receptor protein tyrosine kinase signaling pathway [IBA]
Gene Ontology Molecular Function- GTPase inhibitor activity [TAS]
- WW domain binding [ISS]
- epidermal growth factor receptor binding [IDA]
- hormone receptor binding [IBA]
- non-membrane spanning protein tyrosine kinase activity [IBA]
- protein binding [IPI]
- protein serine/threonine/tyrosine kinase activity [IDA]
- protein tyrosine kinase activity [IDA]
- GTPase inhibitor activity [TAS]
- WW domain binding [ISS]
- epidermal growth factor receptor binding [IDA]
- hormone receptor binding [IBA]
- non-membrane spanning protein tyrosine kinase activity [IBA]
- protein binding [IPI]
- protein serine/threonine/tyrosine kinase activity [IDA]
- protein tyrosine kinase activity [IDA]
Gene Ontology Cellular Component
NCK2
Gene Ontology Biological Process
- T cell activation [NAS]
- axon guidance [TAS]
- epidermal growth factor receptor signaling pathway [TAS]
- negative regulation of cell proliferation [TAS]
- positive regulation of T cell proliferation [IMP]
- positive regulation of actin filament polymerization [IMP]
- positive regulation of transcription from RNA polymerase II promoter [IDA]
- regulation of epidermal growth factor-activated receptor activity [TAS]
- signal complex assembly [NAS]
- signal transduction [TAS]
Gene Ontology Molecular Function
Affinity Capture-MS
An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods.
Publication
Multiplexed kinase interactome profiling quantifies cellular network activity and plasticity.
Dynamic changes in protein-protein interaction (PPI) networks underlie all physiological cellular functions and drive devastating human diseases. Profiling PPI networks can, therefore, provide critical insight into disease mechanisms and identify new drug targets. Kinases are regulatory nodes in many PPI networks; yet, facile methods to systematically study kinase interactome dynamics are lacking. We describe kinobead competition and correlation analysis (kiCCA), ... [more]
Quantitative Score
- 0.860994836 [kiCCA Pearson R Value]
Throughput
- High Throughput
Additional Notes
- A kinobead competition and correlation analysis (kiCCA) involving a quantitative mass spectrometry-based chemoproteomic method was carried out to identify endogenous kinase interactors.
- High confidence interactions had a kiCCA Pearson R Value >=0.6.
Related interactions
| Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
|---|---|---|---|---|---|---|
| NCK2 TNK2 | Affinity Capture-MS Affinity Capture-MS An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods. | High | 1 | BioGRID | 1189975 | |
| NCK2 TNK2 | Affinity Capture-MS Affinity Capture-MS An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods. | High | 1 | BioGRID | 2219370 | |
| NCK2 TNK2 | Affinity Capture-MS Affinity Capture-MS An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods. | High | 1 | BioGRID | 3047074 |
Curated By
- BioGRID