EIF4E
Gene Ontology Biological Process
- G1/S transition of mitotic cell cycle [IMP]
- RNA metabolic process [TAS]
- cellular protein metabolic process [TAS]
- cytokine-mediated signaling pathway [TAS]
- gene expression [TAS]
- insulin receptor signaling pathway [TAS]
- mRNA export from nucleus [TAS]
- mRNA metabolic process [TAS]
- nuclear-transcribed mRNA catabolic process, deadenylation-dependent decay [TAS]
- nuclear-transcribed mRNA poly(A) tail shortening [TAS]
- positive regulation of mitotic cell cycle [IMP]
- regulation of translation [IDA]
- translation [TAS]
- translational initiation [TAS]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
EIF4G2
Gene Ontology Biological Process
Gene Ontology Molecular Function
Affinity Capture-Western
An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins.
Publication
Paralogous translation factors target distinct mRNAs to differentially regulate tolerance to oxidative stress in yeast.
Translation initiation factor 4G (eIF4G) is an integral component of the eIF4F complex which is key to translation initiation for most eukaryotic mRNAs. Many eIF4G isoforms have been described in diverse eukaryotic organisms but we currently have a poor understanding of their functional roles and whether they regulate translation in an mRNA specific manner. The yeast Saccharomyces cerevisiae expresses two ... [more]
Throughput
- Low Throughput
Related interactions
| Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
|---|---|---|---|---|---|---|
| EIF4E EIF4G2 | Co-fractionation Co-fractionation Interaction inferred from the presence of two or more protein subunits in a partially purified protein preparation. If co-fractionation is demonstrated between 3 or more proteins, then add them as a complex. | High | - | BioGRID | 3435306 |
Curated By
- BioGRID