MDM2
Gene Ontology Biological Process
- DNA damage response, signal transduction by p53 class mediator resulting in cell cycle arrest [IMP, TAS]
- Fc-epsilon receptor signaling pathway [TAS]
- cellular response to hypoxia [IEP]
- epidermal growth factor receptor signaling pathway [TAS]
- establishment of protein localization [IDA]
- fibroblast growth factor receptor signaling pathway [TAS]
- innate immune response [TAS]
- negative regulation of DNA damage response, signal transduction by p53 class mediator [IDA]
- negative regulation of cell cycle arrest [IDA]
- negative regulation of transcription from RNA polymerase II promoter [IDA]
- negative regulation of transcription, DNA-templated [IDA]
- neurotrophin TRK receptor signaling pathway [TAS]
- peptidyl-lysine modification [IMP]
- phosphatidylinositol-mediated signaling [TAS]
- positive regulation of cell proliferation [TAS]
- positive regulation of mitotic cell cycle [IMP]
- positive regulation of proteasomal ubiquitin-dependent protein catabolic process [IDA]
- protein complex assembly [IDA]
- protein destabilization [IDA]
- protein localization to nucleus [IDA]
- protein ubiquitination [IDA]
- protein ubiquitination involved in ubiquitin-dependent protein catabolic process [IDA]
- regulation of protein catabolic process [IDA]
- response to antibiotic [IEP]
- synaptic transmission [TAS]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
RPS6KA3
Gene Ontology Biological Process
- MyD88-dependent toll-like receptor signaling pathway [TAS]
- MyD88-independent toll-like receptor signaling pathway [TAS]
- TRIF-dependent toll-like receptor signaling pathway [TAS]
- axon guidance [TAS]
- central nervous system development [TAS]
- innate immune response [TAS]
- negative regulation of apoptotic process [TAS]
- negative regulation of cysteine-type endopeptidase activity involved in apoptotic process [IDA]
- neurotrophin TRK receptor signaling pathway [TAS]
- positive regulation of cell differentiation [TAS]
- positive regulation of cell growth [TAS]
- positive regulation of transcription from RNA polymerase II promoter [IMP]
- regulation of DNA-templated transcription in response to stress [TAS]
- regulation of translation in response to stress [TAS]
- response to lipopolysaccharide [ISS]
- signal transduction [TAS]
- skeletal system development [TAS]
- stress-activated MAPK cascade [TAS]
- synaptic transmission [TAS]
- toll-like receptor 10 signaling pathway [TAS]
- toll-like receptor 2 signaling pathway [TAS]
- toll-like receptor 3 signaling pathway [TAS]
- toll-like receptor 4 signaling pathway [TAS]
- toll-like receptor 5 signaling pathway [TAS]
- toll-like receptor 9 signaling pathway [TAS]
- toll-like receptor TLR1:TLR2 signaling pathway [TAS]
- toll-like receptor TLR6:TLR2 signaling pathway [TAS]
- toll-like receptor signaling pathway [ISS, TAS]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
- cytosol [TAS]
- nucleoplasm [TAS]
Affinity Capture-Western
An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins.
Publication
p90RSK Regulates p53 Pathway by MDM2 Phosphorylation in Thyroid Tumors.
The expression level of the tumor suppressor p53 is controlled by the E3 ubiquitin ligase MDM2 with a regulatory feedback loop, which allows p53 to upregulate its inhibitor MDM2. In this manuscript we demonstrated that p90RSK binds and phosphorylates MDM2 on serine 166 both in vitro and in vivo by kinase assay, immunoblot, and co-immunoprecipitation assay; this phosphorylation increases the ... [more]
Throughput
- Low Throughput
Curated By
- BioGRID